首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Photochemistry of Conjugated δ-Keto-enones and β,γ,δ,?-Unsaturated Ketones On 1π,π*-excitation the δ-keto-enones 5–8 are isomerized to compounds B ( 18 , 22 , 26 , 28 ) via 1,3-acyl shift and to compounds C ( 19 , 23 , 27 , 29 ) via 1,2-acyl shift, whereas the β,γ,δ,?-unsaturated ketone 9 gives the isomers 32 and 33 by 1,2-and 1,5-acyl shift, respectively. Furthermore, isomerization of 6 to 24 , dimerization of 8 to 30 and addition of methanol to 8 ( 8 → 31 ) is observed. Unlike 7 and 8 the acyclic ketones 5 , 6 and 9 undergo photodecarbonylation on 1π,π*-excitation ( 5 → 20 , 21 ; 6 → 20 , 25 ; (E)- 9 → 35–38 ). Evidence is given, that the conversion to B as well as the photodecarbonylation of 5,6 and 9 arise from an excited singulet state, but the conversion to C as well as the dimerization of 8 from the T1-state.  相似文献   

2.
The photolysis of (R)-(+)-phenyl and (R)-(+)-p-anisyl 1, 2, 3-trimethylcyclopent-2-enyl ketone ( 1 , 2 ) and the corresponding rac-1- and 3-desmethyl analogs ( 3 , 4 ) led to isomerization due to formal 1, 3 aroyl migration and to formation of aryl aldehydes ( 7 , 8 ), dienes ( 9 , 10 ) and dimers ( 5 , 6 ) of the cyclopentenyl radical. Evidence obtained from a chiroptical and mass spectrometric analysis of a crossing experiment and from photolytic CIDNP measurements including the use of CCl4 as a free radical scavenger, supports the conclusion (1): that the ketones undergo photochemical α-cleavage predominantly in the triplet state; (2): that recombination and disproportionation reactions within the geminate singlet and triplet aroyl/allyl radical pairs ( 11 ) compete with the dissociation into free radicals ( 12 ): (3): that ketone isomerization by paths not involving polarizable radical intermediates is unimportant; (4): that no triplet oxa-di-π-methane type rearrangement products are formed.  相似文献   

3.
On triplet excitation (E)- 2 isomerizes to (Z)- 2 and reacts by cleavage of the C(γ), O-bond to isomeric δ-ketoester compounds ( 3 and 4 ) and 2,5-dihydrofuran compounds ( 5 and 19 , s. Scheme 1). - On singulet excitation (E)- 2 gives mainly isomers formed by cleavage of the C(γ), C(δ)-bond ( 6–14 , s. Scheme 1). However, the products 3–5 of the triplet induced cleavage of the C(γ), O-bond are obtained in small amounts, too. The conversion of (E)- 2 to an intermediate ketonium-ylide b (s. Scheme 5) is proven by the isolation of its cyclization product 13 and of the acetals 16 and 17 , the products of solvent addition to b . - Excitation (λ = 254 nm) of the enol ether (E/Z)- 6 yields the isomeric α, β-unsaturated ε-ketoesters (E/Z)- 8 and 9 , which undergo photodeconjugation to give the isomeric γ, δ-unsaturated ε-ketoesters (E/Z)- 10 . - On treatment with BF3O(C2H5)2 (E)- 2 isomerizes by cleavage of the C(δ), O-bond to the γ-ketoester (E)- 20 (s. Scheme 2). Conversion of (Z)- 2 with FeCl3 gives the isomeric furan compound 21 exclusively.  相似文献   

4.
On triplet sensitization (E)- 5 gives (Z)- 5 and isomerizes via C(δ), O-bond cleavage to the cyclobutanone 6 and the conjugated γ-ketoester 7 . - On singulet excitation 6 undergoes decarbonylation and yields the bicyclo [4.1.0]heptane 8 . However, on triplet sensitization 6 is converted to the isomeric tricyclononane 9 by a stereospecific oxa-di-π-methane rearrangement. The structure of 9 is determined by X-ray analysis of the p-nitrobenzoate 15: a = 10.573, b = 14.707, c = 13.494 Å, β = 112.40°, P21/n, Z, = 4.  相似文献   

5.
The irradiation of 17β-acetoxy-4-oxa-1,5-androstadien-3-one ( 12 ) yielded the two stereoisomeric spiro-lactones 13 and 14 , which result from a di-π-methane photorearrangement. A third product, the oxa-anthrasteroid 15 , was also isolated (Scheme 3).  相似文献   

6.
The α,β-unsatured ketone 10α-testosterone has been reported previously [6] to photoisomerize in t-butanol solution to the β,γ-unsaturated ketone. The irradiation had been carried out using a high-pressure mercury lamp in a quartz vessel. For structural reasons this double bond shift cannot proceed through a photoenolization mechanism involving an intramolecular hydrogen transfer from the γ-position to the enone oxygen as has been suggested to operate in several formally analogous cases of aliphatic enone isomerizations. In the present reinvestigation, O-acetyl 10α-testosterone ( 1 ) was used, employing selectively either excitation of its n → π* (with wavelengths > 300 nm) or its π → π* absorption band (with 253,7 nm). In t-butanol solution the doublebond shift 1 → 2 could be effected with π→* excitation only. Experiments in deuterated solvent (t-BuOD) resulted in deuterium in corporation in both the δ5-ketone in the C(4)-position, cf.( 3 ) and in the conjugated ketone. These results indicate that the reactions is initiated either in the, Sπ,π* state or in a high vibrational mode of the S0 or tππ*state. n→ π* Excitation of 1 in t-butanol gave essentially no over-all chemical change, while in benzene solution it resulted again in a double bond isomerization ( 1 → 2 ). In analogy to results with similar enones [28] under identical conditions the deconjugation in benzene may be the consequence of an intermolecular hydrogen abstraction of the Tn,π* excited state of the enone. Another specifically π →π* induced photoreaction was observed on irradiation of the β, γ-unsaturated ketone 2 in t-BuOD with 253,7 nm. The olefinic hydrogen at C-6 of 2 was exchanged with deuterium and, to a small extent, isomerization to the conjugated ketone 1 with concomitant deuterium incorporation occurred. It is concluded that from the higher excited state of the β, γ-unsaturated ketone, but not from its Sn,π* state, an activation mode of the double bond is accessible to effect D+ addition at C-6 followed by deprotonation to 4 and to deuterated 1 , respectively.  相似文献   

7.
2-Cyclopentenyl and 3-phenyl-2-cyclopentenyl methyl ketones (15–18, 30, 31) undergo a 1,3-acetyl shift on direct irradiation, and the oxa-di-π-methane rearrangement to photochemically non-interconverting endo and exo bicyclo-[2.1.0]pentyl methyl ketones on triplet sensitization. Exceptions include the 2-methyl-3-phenyl-2-cyclopentenyl methyl ketone 32 and the 1-phenyl-2-cyclo-pentenyl methyl ketone 44 which are unreactive on direct irradiation and on triplet sensitization, respectively, and the 2-phenyl-2-cyclopentenyl methyl ketones 42 and 43 which do not react under either condition. The reactive triplet of the 3-phenyl-2-cyclopentenyl methyl ketone 30 has been identified as the localized styrene π,π*-state of ET=59 kcal/mol by comparison of its phosphorescence at 77K in rigid glasses with that of 1-phenyl-cyclopentene, and by the independence of the quantum yield on sensitizer energy in the range of 61–74 kcal/mol.  相似文献   

8.
The Photochemistry of Tetraalkyl Substituted γ-Keto-olefines The photochemistry of 7,8-dihydro-β-ionone ( 1 ) in solution is shown to depend on temperature, polarity and viscosity of the solvent. UV. irradiation (λ ≥ 245 nm) in pentane at +25° converts 1 to the isomeric ethers 3 (16%), 5A (48%) and 5B (22%), whereas at ?65° 7,8-dihydro-γ-ionone ( 26 ) is obtained in 12% yield together with 13% of 3 , 12% of 5A and 9% of 5B . The 1n,π*-excitation of 1 in acetonitrile gives similar results. In the more viscous 1,2,3-triacetoxypropane the photoisomerization 1 → 26 takes place even at + 60° (10% yield, cf. 40% at ?15°). In alcoholic solvents, however, no formation of 26 is detected, but the hitherto unknown [2+2]-photocycloaddition 1 → 11 can be observed (4% at ?7°, 15% at ?65S° in 2-propanol). An intermediate e may be involved (Scheme 14). In addition to the photoreactions 1 → 3, 5A, 5B and 11 the isomerization of 1 to the novel spirocyclic ketone 28 takes place in alcoholic solvents only. Photoisomerization 1 → 3 is presumably a photo-ene process involving a stereoselective intramolecular H-transfer. This type of photoisomerization is restricted to cyclic γ-keto-olefines. The tetraalkylated acyclic γ-keto-olefines 14 and 15 photoisomerize exclusively by [2+2]-cycloaddition, independent of the solvent. On 1n,π*-excitation the δ,?-unsaturated bicyclic ketone 44 undergoes Norrish-Type-II photofragmentation to the diene 45 or isomerizes to the γ, ?-unsaturated ketone 17 . Competition between these two reactions is strongly temperature dependent: photolysis in pentane at ?72° yields quantitatively 45 , whereas at + 35° only 30% of 45 and 68% of 17 are obtained. UV. irradiation of the novel spirocyclic ketone 28 gives as primary photoproduct the isomeric aldehyde 29 , and in a secondary photoreaction the isomeric oxetanes 30A and 30B . Experiments with deuteriated substrates show that the isomerization of type 28 → 29 is stereocontrolled.  相似文献   

9.
Photochemistry of γ,δ-Methano-α-enones Direct excitation (λ = 254 or ≥ 347 nm) converts the γ,δ-methano-α-enone (E)- 10 into the isomeric ether 23 and the isomeric diene-ketone 24 . Furthermore, on 1π,π*-excitation (λ = 254 nm) (E)- 10 undergoes an 1,3-homosigmatropic rearrangement yielding the enone (E)- 25 . In addition (E → Z)-isomerization of (E)- 10 and conversion of 10 to the isomeric furan 28 is observed. The isomerization (E)- 10 → 23 , 24 and (E)- 25 proceeds by photocleavage of the C(γ), C(δ)-bond, whereas the formation of 28 occurs by photocleavage the C(γ), C(δ)-bond together with that of the C(γ), C(δ′)-bond of 10 . On direct excitation the bicyclic diene-ether 23 yields the methano-enone 10 , the dieneketone 24 and the tricyclic ether 29 . Evidence is given, that the conversion 23 → 10 is a singulet process. On the other hand, the isomerization 23 → 24 and the intramolecular [2 + 2]-photocycloaddition 23 → 29 are shown to be triplet reactions. Irradiation (λ = 254 nm) of the homoconjugated ketone 24 yields the isomeric ketone 27 by an 1,3-acyl shift. The excitation of the (E)-enone 25 induces (E → Z)-isomerization and photoenolization to give the homoconjugated ketone 26 .  相似文献   

10.
The photochemistry of the conjugated cyclohexenones O-acetyl testosterone ( 1 ) and 10-methyl-Δ1,9-octalone-(2) ( 24 ) has been investigated in detail. The choice of reaction paths of both ketones depends strongly on the solvent used. In t-butanol, a photostationary equilibrium 1 ? 3 is reached which is depleted solely by the parallel rearrangement 1 → 5 (Chart 1; for earlier results on these reactions see [2a] [6] [7]). In benzene, double bond shift 1 → 16 (Chart 3) occurs instead, which is due to hydrogen abstraction from a ground-state ketone by the oxygen of an excited ketone as the primary photochemical process. In toluene, the major reaction is solvent incorporation ( 1 → 17 , Chart 4) through hydrogen addition to the β-carbon of the enone, accompanied by double bond shift and formation of saturated dihydroketone as the minor reactions. Contrary in part to an earlier report [19], the photochemical transformation of the bicyclic enoné 24 exhibit a similar solvent dependence. The corresponding products 25 – 29 are summarized in Chart 5 and Table 1. Sensitization and quenching experiments established the triplet nature of the above reactions of 1 and 24 . Based on STERN -VOLMER analyses of the quenching data (cf. Figures 2, 4–8, and Table 3), rearrangement, double bond reduction and toluene addition are attributed to one triplet state of the enones which is assigned tentatively as 3(π, π*) state, and the double bond shift is attributed to another triplet assigned as 3(n, π*) state (cf. Figure 9). The stereospecific rearrangement of the 1α-deuterated ketone 2 to the 4β-deuterio isomer 4 shows the reaction to proceed with retention at C-1 and inversion at C-10. The 4-substituted testosterone derivatives 33 – 36 (Chart 8) were found to be much less reactive in general than 1 . In particular, 4-methyl ketone 33 remains essentially unchanged on irradiation in t-butanol, benzene and toluene.  相似文献   

11.
The photoinduced cleavage of the C,C-oxirane bond of γ, δ-epoxy-enones: UV.-irradiation of 4-methylidene-5,6-epoxy-5,6-dihydro-β-ionone On 1n, π*-excitation (λ ≥ 347 nm, pentane) 5 gives the isomeric bicyclic ether 10 in 75% yield (s. Scheme 2). In methanol the photoconversion of 5 to 10 is strongly reduced (12%) in favour of the formation of the methanol adduct 11 (43%). On photolysis in aqueous acetonitrile 5 is converted to the bicyclic ether 10 (9%), the dihydrofurane 12 (18%) as well as to the triketones 13A and 13B (7%), and 14 (23%). On 1π, π*-excitation (λ = 254 nm) in pentane no 10 is formed, but 5 isomerizes to the tricyclic cyclopropyl compound 16 (59%), the allenic product 17 (10%), and the cyclopropene compound 18 (12%; s. Scheme 3). Photolysis in methanol furnishes 11 (63%), and 18 (4%), but no tricyclic cyclopropyl compound 16 . In a secondary photoreaction (λ = 254 nm) the dihydrofurane 12 is isomerized to the bicyclic cyclopropyl compound 20 . Evidence is given that the products 11 and 13 are formed by solvent addition to an intermediate ketonium ylide b (s. Scheme 12). The presence of b is further proven by the formation of 12 , a product of an electrocyclization of b . On photofragmentation of b carbenoids d and e are presumably formed (s. Scheme 14). 1,2-Hydrogen shift in d yields the allene derivative 17 , and cyclization of d gives the cyclopropene compound 18 . On the other hand, e cyclizes to the non isolated cyclopropene compound 69 which is transformed to 16 by an intramolecular [4 + 2]-cycloaddition. The present investigation shows that the photochemistry of 5 is determined by photoinduced C,C-bond cleavage of the oxirane ring. This is in sharp contrast to the photochemistry of conjugated γ, δ-epoxy-enones without the additional double bond in ε, ζ-position, where selective photocleavage of the C(λ), O-bond is observed.  相似文献   

12.
The oxa-di-π-methane rearrangement product 4,4,9,9-tetramethyltetracyclo [6.4.0.01,5.02,8]dodecane-7,12-dione ( 2 ) is formed selectively in a variety of solvents on either direct (λLD = 254, 300, 350 nm) or sensitized (xanthone, acetone, benzene) irradiation of the title compound 1 . The efficiency for this rearrangement is higher on So–S1 excitation (Φ?1 = 0.67) than on either So–S2 or So–S3 excitation (Φ?1 = 0.58).  相似文献   

13.
6-Benzylbicyclo [4.4.0]dec-1-en-3-one ( 9 ) and the 2-methyl homologue ( 10 ) underwent a (γ → α )-1, 3-benzyl shift to the β,γ-unsaturated ketones 21 and 22 , respectively, when excited in the π π* absorption band. The quantum yield was ca. 0.1 at 254 nm for the formation of both products in alkane solvents. These reactions occur specifically from the S2(π, π*) state in competition with its decay to the S1(n, π*) and T states. The triplet reaction of 9 , initiated by n → π* irradiation and by sensitization, was a double-bond shift to 20 , whereas no identifiable product was observed from 10 under these conditions. Direct and acetone-sensitized irradiations of 21 and 22 resulted in oxadi-π-methane rearrangements to mixtures of syn- and anti- 30 and syn- and anti- 31 , respectively.  相似文献   

14.
The bicyclic and tricyclic meso-N-(methylsulfonyl)dicarboximides 1a–f are converted enantioselectively to isopropyl [(sulfonamido)carbonyl]-carboxylates 2a–f by diisopropoxytitanium TADDOLate (75–92% yield; see Scheme 3). The enantiomer ratios of the products are between 86:14 and 97:3, and recrystallization from CH2Cl2/hexane leads to enantiomerically pure sulfonamido esters 2 (Scheme 3). The enantioselectivity shows a linear relationship with the enantiomer excess of the TADDOL employed (Fig.3). Reduction of the ester and carboxamide groups (LiAlH4) and additional reductive cleavage of the sulfonamido group (Red-Al) in the products 2 of imide-ring opening gives hydroxy-sulfonamides 3 and amino alcohols 4 , respectively (Scheme 4). The absolute configuration of the sulfonamido esters 2 is determined by chemical correlation (with 2a,b ; Scheme 6), by the X-ray analysis of the camphanate of 3e (Fig. 1), and by comparative 19F-NMR analysis of the Mosher esters of the hydroxy-sulfonamides 3 (Table 1). A general proposal for the assignment of the absolute configuration of primary alcohols and amines of Formula HXCH2CHR1R2, X = O, NH, is suggested (see 11 in Table 1). It follows from the assignment of configuration of 2 that the Re carbonyl group of the original imide 1 is converted to an isopropyl ester group. This result is compatible with a rule previously put forward for the stereochemical course of reactions involving titanium TADDOLate activated chelating electrophiles ( 12 in Scheme 7). A tentative mechanistic model is proposed ( 13 and 14 in Scheme 7).  相似文献   

15.
UV.-irradiation (λ ≥ 327 nm) of the α,β-unsaturated γ,δ-epoxy ketone 2 in pentane gives the isomers oxidoketone 3 and diketone 4, in high yield. On treatment with BF3O(C2H5)2, 2 undergoes rearrangement to the diketone 4 and the isomeric lactone 8 and yields also the dimer 9.  相似文献   

16.
On 1n,π*-excitation, the title compound 2 undergoes a photoinduced intramolecular [4 + 2]-cycloaddition affording the tetracyclic enol ether 3 as the only product in 79% yield. The assigned structure of 3 was confirmed by its conversion to the p-nitrobenzoate 6 whose structure was determined by X-ray analysis.  相似文献   

17.
Irradiation in the n→π* absorption band of the α,β-unsaturated γ,δ-epoxyketone 5 in ethanol at ?65° exclusively afforded the rearranged ene-dione 13 , whereas at + 24° under otherwise unchanged reaction conditions or upon triplet sensitization with Michler's ketone and with acetophenone at + 24° essentially identical mixtures of 13 (major product), 14 , and 15 were obtained. Selective π→π* excitation of 5 at ?78° and + 24° led to similar product patterns. The 9β,10β-epimeric epoxyketone 7 selectively isomerized to 14 and 15 at + 24° and n → π* or π → π* excitation. Neither the epoxyketones 5 and 7 nor the photoproducts 13–15 were photochemically interconverted. In separate photolyses each of the latter gave the double bond isomers 16 , 18 , and 19 , respectively. Cleavage of 13 to the dienone aldehyde 17 competed with the double bond shift ( → 16 ) when photolyzed in alcoholic solvents instead of benzene. The selective transformations 5 → 13 (at ?65° and n → π* excitation) and 7 → 14 + 15 are attributed to stereoelectronic factors facilitating the skeletal rearrangements of the diradicals 53 and 55 , the likely primary photoproducts resulting from epoxide cleavage in the triplet-excited compounds 5 and 7 , via the transition states 54 , 56 , and 57 . The loss of selectivity in product formation from 5 at higher temperature and n → π* excitation or triplet sensitization is explicable in terms of radical dissociation into 58 and 59 increasingly participating at the secondary thermal transformations of 53 . The similar effect of π → π* excitation even at ?78° indicates that some of the π,π* singlet energy may become available as thermal activation energy. It is further suggested that the considerably lesser ring strain in 14 and 15 , as compared with 13 , is responsible that selectivity in product formation from 7 is maintained also at +24° and at π → π* excitation.  相似文献   

18.
Cob(I)alamin as Catalyst. 5. Communication [1]. Enantioselective Reduction of α,β-Unsaturated Carbonyl Derivatives The cob(I)alamin-catalyzed reduction of an α,β-unsaturated ethyl ester in aqueous acetic acid produced the (S)-configurated saturated derivative 2 with an enantiomeric excess of 21%. The starting material 1 is not reduced at pH = 7.0 in the presence of catalytic amounts of cob(I)alamin (see Scheme 2). It is shown that the attack of cob(I)alamin and not of cob(II)alamin, also present in Zn/CH3COOH/H2O, accounts for the enantioselective reduction observed. All the (Z)-configurated starting materials 1 , 3 , 5 , 7 , 9 and 11 have been transformed to the corresponding (S)-configurated saturated derivatives 2 , 4 , 6 , 8 , 10 and 12 , respectively. The highest enantiomeric excess revealed to be present in the saturated product 12 (32,7%, S) derived from the (Z)-configurated methyl ketone 11 (see Scheme 3 and Table 1). The reduction of the (E)-configurated starting materials led mainly to racemic products. A saturated product having the (R)-configuration with a rather weak enantiomeric excess (5.9%) has been obtained starting from the (E)-configurated methyl ketone 23 (see Scheme 5 and Table 2). The allylic alcohols 16 and 24 have been reduced to the saturated racemic derivative 17 .  相似文献   

19.
An expedient route to tetracyclo[6.5.2.02,7.09,13]pentadec-2(7),11-dien-14-one and tetracyclic framework of conidiogenol have been reported. Cycloaddition of annulated cyclohexa-2,4-dienone with cyclopentadiene, photochemical oxa-di-π-methane reaction and a highly unusual dehalogenation of bridgehead halogen are the key features of our methodology.  相似文献   

20.
Vinylogous β-Cleavage of Epoxy-enones: Photoisomerization of 3,4: 5,6-Diepoxy-5,6-dihydro-β-ionone On 1n,π*-excitation (λ>347 nm), 3,4:5,6-diepoxy-5,6-dihydro-β-ionone ((E)- 3 ) shows the typical behaviour of α,β-unsaturated γ,δ-epoxy ketones furnishing the (Z)-enone 3 and by C(γ),O cleavage of the oxirane the dihydrofuryl ketone 10 and the cyclohexanones (E/Z)- 11 . However, on 1π,π*-excitation an unexpected type of transformation is observed: (E)- 3 is isomerized to the four aliphatic triketones 5 – 8 as the main products. To a smaller extent the allene diketone 9 is formed by a known type of isomerization as well as (Z)- 3 . As the starting material for the preparation of (E)- 3 , the known epidioxy-enone (E)- 4 was used. In addition to (E)- 3 , (E)- 4 gives the aliphatic triketone 6 and the hydroxyenone 15 by thermal or catalytic isomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号