首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on particle swarm optimization (PSO), a thermodynamic modeling for the vapor-liquid equilibrium of binary mixtures of carbon dioxide with ionic liquids is presented. The Peng-Robinson equation of state with the Wong-Sandler mixing rules is used to evaluate the fugacity coefficient of the systems. Simulations are carried out in five systems containing 1-alkyl-3-methylimidazolium ionic liquids based on bis[(trifluoromethyl)sulfonyl]imide anion. Then, PSO algorithm was used to minimize the difference between calculated and experimental bubble pressure, and calculate the interaction parameters and the excess Gibbs free energy for all systems used. The results show that the bubble pressures were correlated with low deviations between experimental and calculated values. These deviations show that the PSO algorithm is the preferable method to optimize the interaction parameters of the phase equilibria of binary systems of supercritical carbon dioxide with ionic liquids, and can be used for other similar systems.  相似文献   

2.
Ionic liquids display an array of useful and sometimes unconventional, solvent features and have attracted considerable interest in the field of green chemistry for the potential they hold to significantly reduce environmental emissions. Some of these points have a bearing on the chemical reactivity of these systems and have also generated interest in the physical and theoretical aspects of solvation in ionic liquids. This review presents an introduction to the field of ionic liquids, followed by discussion of investigations into the solvation properties of neat ionic liquids or mixed systems including ionic liquids as a major or minor component. The ionic liquid based multicomponent systems discussed are composed of other solvents, other ionic liquids, carbon dioxide, surfactants or surfactant solutions. Although we clearly focus on fluorescence spectroscopy as a tool to illuminate ionic liquid systems, the issues discussed herein are of general relevance to discussions of polarity and solvent effects in ionic liquids. Transient solvation measurements carried out by means of time-resolved fluorescence measurements are particularly powerful for their ability to parameterize the kinetics of the solvation process in ionic liquids and are discussed as well.  相似文献   

3.
通过量子力学与分子动力学对胍盐离子液体的模拟表明,胍阳离子与氯负离子之间存在较强的相互作用,其相互作用能约为-109.216 kcal/mol.从能量与几何分布可见,两种空间分布方式中最稳定构象为Middle作用模式.径向分布函数也验证了这一结论.CO2含量的不断增加并没有对离子液体的结构产生影响,而是被离子液体的空腔捕获.  相似文献   

4.
In the present work, we have used a simple equation of state called the GMA EoS to calculate the density of three ionic liquid mixtures including 1-butyl-3-methylimidazolum hexafluorophosphate, [BMIM] [PF6] + methanol, 1-butyl-3-methylimidazolum tetrafluoroborate, [BMIM] [BF4] + methanol, and [BMIM] [BF4] + ethanol at different temperatures, pressures, and compositions. The isothermal compressibility, excess molar volumes, and excess Gibbs molar energy of these mixtures have been computed using this equation of state. The values of statistical parameters show that the GMA EoS can predict these thermodynamic properties very well within the experimental errors. The results show that isothermal compressibility of ionic liquids is lower than alcohols and the effect of temperature and pressure on the isothermal compressibility of ionic liquids is lower than alcohols. The excess molar volumes and excess molar Gibbs energy for these ionic liquid mixtures with alcohols are all negative at various temperatures and pressures over the whole composition range. The results have been interpreted in terms of intermolecular interactions and structural factors of the ionic liquids and alcohols.  相似文献   

5.
In the current study, spectroscopic and physicochemical properties of newly prepared ionic liquids were investigated. Ionic liquids were synthesized via a simple and straightforward route using a metathesis reaction of either N,N-diethyl-p-phenylenediamine monohydrochloride or N-phenacylpyridinium bromide with bis(trifluoromethane)sulfonimide lithium in water. High yield and purity were obtained for the resultant ionic liquids. Data acquired by use of 1H NMR and FT-IR measurements were consistent with the chemical structures of newly prepared ionic liquids. Results of thermal gravimetric analysis also implied that these ionic liquids have good thermal stability. In addition, UV–vis and fluorescence spectroscopy measurements provided that new ionic liquids are good absorbent and fluorescent. Time-based fluorescence steady-state measurements showed that ionic liquids have high photostability against photobleaching. For a deeper mechanistic understanding of the analytical potential of newly synthesized ionic liquids, spectroscopic and physicochemical parameters, including singlet absorption, extinction coefficient, fluorescence quantum yield, Stokes shift, oscillator strength and dipole moment, were also investigated.  相似文献   

6.
The binary composite ionic liquid mixtures composed of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) and 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) were studied and used in electroreduction of nitrobenzene for the first time. 1H NMR and Fourier transform infrared (FTIR) spectroscopy were carried out to acquire a deep understanding of the interaction of binary ionic liquids, and UV/Vis spectroscopy was used to study the interaction between the mixture of ionic liquids and nitrobenzene. It was found that chemical shifts of all protons were changed and significant changes in the anion IR bands were induced, and the UV maximum absorption wavelength and absorbance of nitrobenzene in binary ionic liquids were different from those in the neat ionic liquid. The electrochemical reduction behavior of nitrobenzene in binary composite ionic liquids on platinum electrode was studied by cyclic voltammetry, in situ Fourier transform infrared spectroscopy, and constant potential electrolysis. Results indicated that the reduction of nitrobenzene in binary composite ionic liquids demonstrated higher current densities with a more positive potential, and the product (azobenzene) showed higher yield and selectivity in the composite ionic liquids than in the neat ionic liquids; the concentrations of water in the binary mixtures of ionic liquids had great effect on the electrochemical behavior of nitrobenzene. In the end, the mechanism of reduction of nitrobenzene in binary mixtures of ionic liquids was discussed.  相似文献   

7.
Raman and electronic spectra of the [3,5‐bis(dicyanomethylene)cyclopentane‐1,2,4‐trionate] dianion, the croconate violet (CV), are reported in solutions of ionic liquids based on imidazolium cations. Different normal modes of the CV anion, ν (CO), ν (CO) + ν (CC) + ν (CCN), and ν(C≡N), were used as probes of solvation characteristics of ionic liquids, and were compared with spectra of CV in common solvents. The spectra of CV in ionic liquids are similar to those in dichloromethane solution, but distinct from those in protic solvents such as ethanol or water. The UV–vis spectra of CV in ionic liquids strongly suggest π–π interactions between the CV anion and the imidazolium cation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A nucleophilic aromatic substitution reaction involving a halopyridine electrophile was examined in a series of ionic liquid solvents. This reaction was chosen to test the known solvent effects of ionic liquids on this type of reaction mechanism, previously described with a halobenzene electrophile. The effect of varying the proportion of the ionic liquid in solution was determined, and it was shown that the more ionic liquid present in the reaction mixture, the greater the rate constant enhancement. Temperature‐dependent kinetic analyses yielded activation parameters that showed that the rate constant enhancements are controlled by a balance between enthalpic and entropic effects, depending upon the proportion of ionic liquid present. Overall, the rate enhancement is entropically driven, due to organisation of the ionic liquid about the electrophile. These results are consistent with what has been observed previously for the nucleophilic aromatic substitution reaction involving a halobenzene electrophile, demonstrating that the solvent effects observed for ionic liquids are general for this type of reaction mechanism and opening the possibility for extending their use through rational selection for reaction control.  相似文献   

9.
A hard sphere equation of state (EOS) based on tetrakaidecahedron cell geometry (instead of spherical shape) and highly optimized molecular dynamic simulation data is proposed. The EOS is extended to hard sphere mixture and its performance for compressibility factor calculation at different diameter size of hard sphere mixtures by using various mixing rule is compared with Monte Carlo simulation data. The results indicated that for all mixing rules, the proposed EOS has minimum error comparing with computer simulation data. Also the residual prosperities are derived by using the proposed EOS. The residual properties are used in mean spherical approximation model (MSA) to evaluate the mean ionic activity coefficient of aqueous electrolyte solutions. The results are compared with those obtained by similar hard sphere equations of state and it is shown that the proposed EOS has a better performance in predicting the mean ionic activity coefficient.  相似文献   

10.
The paper discusses the nonlinear response of disordered systems. In particular we show how the nonlinear response can be interpreted in terms of properties of the potential energy landscape. It is shown why the use of relatively small systems is very helpful for this approach. For a standard model system we check which system sizes are particular suited. In case of the driving of a single particle via an external force the concept of an effective temperature helps to scale the force dependence for different temperature on a single master curve. In all cases the mobility increases with increasing external force. These results are compared with a stochastic process described by a 1d Langevin equation where a similar scaling is observed. Furthermore it is shown that for different classes of disordered systems the mobility can also decrease with increasing force. The results can be related to the properties of the chosen potential energy landscape. Finally, results for the crossover from the linear to the nonlinear conductivity of ionic liquids are presented, inspired by recent experimental results in the Roling group. Apart from a standard imidazolium-based ionic liquid we study a system which is characterized by a low conductivity as compared to other ionic liquids and very small nonlinear effects. We show via a real space structural analysis that for this system a particularly strong pair formation is observed and that the strength of the pair formation is insensitive to the application of strong electric fields. Consequences of this observation are discussed.  相似文献   

11.
Selected physical properties of the ionic liquids might be quantitatively predicted based on the volumes of the ions these systems are composed of. It is demonstrated that the ionic volumes calculated using relatively simple theoretical quantum chemistry methods can be utilised to estimate the viscosities and electrical conductivities of various commonly used ionic liquids. The fitting formulas of the exponential form are offered and their predictive usefulness is verified. The quality of such predictions is discussed on the basis of several ionic liquids involving [Tf2N]? and [BF4]? anions and 16 various cations. The dependence of the viscosity and electrical conductivity of the ionic liquids on the temperature is also investigated and the temperature-dependent equations are derived and compared to the experimentally measured values.  相似文献   

12.
A simple stopped-flow design for rapid mixing of two liquids within the NMR probe is presented. The device uses no switches or relays but exploits instead the torque exerted by the magnetic field on a current-leading-coil to open and close the start and stop valves. Two serially arranged tangential jet mixer blocks provide a homogeneous mixture with, depending on conditions and requirements, a filling time in the 50-100 ms range and a subsequent stabilization time in the range of 10-40 ms as tested by mixing various combinations of liquids and observing their 1H NMR spectrum. Factors influencing the mixing process are analyzed.  相似文献   

13.
Ionic liquids are a new class of materials with most interesting properties. They are liquid at room temperature, but have a negligible vapour pressure. Consequently they can, in contrast to normal liquids, be investigated by all UHV-based methods of surface science. This allows to determine their properties with the same atomic level accuracy that is presently common for solid surfaces and conventional adsorbate systems. Apart from the investigation of the specific properties of ionic liquids, which are relevant for many applications, this also opens the possibility to obtain more detailed insight in the general physical and chemical properties of liquids. In that sense it opens the door to a new chapter of surface science – “Ionic Liquid Surface Science”.  相似文献   

14.
In this work, properties of a magnetorheological (MR) fluid, prepared by dispersing a mixture of two types of carbonyl iron powders (CIPs) of different sizes, in an ionic liquid (N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate) that is stable from 9 °C to ca. 300 °C, have been investigated. At first, the random packing density of the mixture was computed as function of mixing ratio of CIP, in order to find out the tendency of the variation. Next, several mixtures, all having the same weight, were prepared at various mixing ratios and dispersed in the ionic liquid, in order to experimentally find the most suitable mixing ratio of CIP. Then, the magnetic clusters of the synthesized MR fluids were observed by using a digital microscope equipped with two permanent magnets, whereas the MR properties were investigated by using a rotation viscometer equipped with a solenoid coil. The experimental results pointed out that the MR fluid with 60 wt% fraction of large particles exhibited the highest MR response.  相似文献   

15.
离子液体具有熔点低、可忽略的蒸气压、电化学窗口宽、热稳定性高和良好的导电性等独特性能,引起了化学工业和相关领域的广泛关注。离子液体具有低蒸气压,不会造成空气污染,但这并不意味着它们对环境完全无害。大多数离子液体易溶于水,可能会因为意外泄漏或通过污水进入水生环境。常用离子液体[BMIM][PF6]和[BMIM][BF4]的水溶液中,很容易形成氢氟酸,磷酸,具有一定的腐蚀性。将离子液体列为绿色溶剂,也需要提供其关于代谢和降解的毒性、生态毒性研究数据,或者其对环境影响的数据,离子液体在不同溶剂中的检测方法是非常重要的。离子液体的光谱分析法用量较少、方法简单、结果准确。离子液体和许多有机溶剂互溶,可形成均一、稳定的溶液。荧光检测法具有灵敏度高,选择性好,线性范围宽和受外界干扰少等优点。本工作研究了醋酸N-正辛基吡啶(OP-OAc)离子液体在水、乙醇、乙腈、乙酸等4种溶剂中的荧光光谱。研究结果表明,OP-OAc离子液体在不同溶剂中的荧光强度:I乙酸I乙腈I乙醇I;最大发射波长的大小顺序:λem, 水λem, 乙醇λem, 乙腈λem, 乙酸;它们的最大发射波长相对于激发波长发生红移;水中OP-OAc的荧光强度与浓度存在较高的相关性;当加入的甲醇、乙醇、乙腈溶剂不断增加时,OP-OAc离子液体的荧光强度增加,溶剂与水的比例为8∶2时,OP-OAc离子液体的荧光强度最强,溶剂的比例超过80%时,荧光强度突然降低;水中OP-OAc离子液体在pH 10时,荧光强度最高,在pH 14时,荧光强度最低。  相似文献   

16.
Molecular dynamics simulations of binary mixtures of benzene, 1,3,5-trifluorobenzene and hexafluorobenzene with dimethylimidazolium hexafluorophosphate were carried out to examine their macroscopic and microscopic properties. The energies and volumes of mixing of these mixtures correlate well with observed microscopic properties including coordination number about the aromatic compound. The local ordering of the ions about an aromatic molecule was found to depend on the quadrupole moment of the aromatic species and to remain qualitatively the same on varying the mole fraction of the aromatic species. Interaction energies showed the most significant interactions to be between the aromatic molecule and the ions located about its equator. These findings have implications for the practical use of ionic liquids as solvents for chemical processes.  相似文献   

17.
The effects of water addition and temperature on some physicochemical properties of room temperature ionic liquids containing chromium chloride, choline chloride and water in the molar ratio of 1:2.5:x (where x = 6, 9, 12, 15 or 18) have been studied. The density, viscosity, surface tension and conductivity of the liquid mixtures were measured for the temperature range of 25 to 80 °C. Increasing both water content and temperature resulted in decreasing density, surface tension and viscosity and increasing electrical conductivity. The average void radii (hole sizes) for the liquid systems under study were calculated; they were in the range of 1.21 to 1.82 Å. The average hole size was stated to grow with increasing both temperature and water content in the mixture. The variation of the average void radii correlates with the change in viscosity and conductivity. The activation energies of viscous flow and conductivity diminishes with increasing water content in the liquid mixture. There is a strong linear correlation between conductivity and fluidity which indicates that the conductivity of the ionic liquid mixtures is generally controlled by the ionic mobility. A moderate viscosity and higher conductivity of the Cr(III)-containing ionic liquids with extra-water addition (at x > 9) make them suitable for the development of chromium electrodeposition processes.  相似文献   

18.
The question whether chemical reactions and diffusion processes in ionic liquids are comparable with those taking place in classical organic liquids is a current issue in the literature. Pressure- and temperature-dependent investigations on simple electron self-exchange reactions between the two partners of a redox couple are good tools to get a better understanding of how the solvent influences such reactions. The electron self-exchange reaction between tetrathiafulvalene (TTF) and its radical cation has been investigated in two ionic liquids and two organic solvents using electron spin resonance (ESR) line broadening experiments at variable temperature and pressure. Rate constants are reported for the ionic liquids 1-ethyl-3methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim+][Tf2N?]) and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([bmim+][Tf2N?]) within a temperature range of 298 K ≤ T ≤ 368 K and a pressure range of 0.1 MPa ≤ p ≤ 100 MPa. The self-exchange reaction of the redox couple [TTF/TTF?+] has been found to be diffusion-controlled in the used ionic liquids over the entire temperature range. The observed rate constants in ionic liquids at higher pressures are larger than those predicted by common diffusion, and suggest that the electron transfer takes place within a solvent cage. Also, the self-exchange reaction of the [TTF/TTF?+] redox couple in classical solvents (dimethylphthalate (DMP) and acetonitrile) was investigated and compared to the results with those obtained in ionic liquids. The high viscosity of the ionic liquids makes it difficult to extract the electron transfer rate constants reliably, making interpretation within the framework of the Marcus Theory impossible.  相似文献   

19.
Ionic liquids have a great potential in capture and separation of carbon dioxide (CO2), and the solubility of CO2 in ionic liquids is one of key data for engineering applications. In this paper, the critical properties of ionic liquids are combined with deep learning models (CP-DNN, CP-CNN, CP-RNN) to establish theoretical prediction models of CO2 solubility in ionic liquids. The predictive performance of these framworks is able to meet or exceed the predicted effects of the method based on thermodynamic models (PR,SRK) and machine learning method (XGBoost). For CP-RNN, the coefficient of determination (R2) between experimental and predicted values is 0.988, CP-CNN is 0.999, and CP-DNN is 0.984. This research can avoid complex computational characterisation, it is to provide a theoretical method to further enrich and improve the data information analysis of the solubility of CO2 in ionic liquids.  相似文献   

20.
In this work, a perturbed hard-sphere equation of state has been employed to predict the pressure–volume–temperature properties of some phosphonium-, pyridinium-, and pyrrolidinium-based ionic liquids in compressed states. Two temperature-dependent parameters that appeared in the equation of state have been determined using the critical properties of abovementioned ionic liquids as the scaling constant, i.e., knowing only two available scaling constants is sufficient to utilize the proposed equation of state to this class of fluids. The predicted densities were compared with those obtained from the experiment, over a broad pressure range from 1 to 65 MPa. From 550 data points examined for the aforementioned ionic liquids, the total average absolute deviation, AAD was found to be 1.12%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号