首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Regularities of the interaction of tin grain boundaries (special Σ5 and general Σ17 〈001〉) and a Sn-Zn melt of equilibrium composition were studied. The grain boundary wetting phase transition temperature was determined; for Σ5 and Σ17, it is 216°C. More than 90% of the general grain boundaries were completely wetted by the melt over a range of temperatures, from the eutectic melting temperature to the tin melting temperature. It was shown that the anisotropy of interphase energy at the solid tin-Zn-Sn melt interface is 64 ± 10 mJ m?2 at 216°C. The energies of the Σ5 and Σ17 grain boundaries in the range of 201–216°C were obtained on the basis of the experimental dependence of the dihedral angle on temperature.  相似文献   

2.
M. A. Tschopp 《哲学杂志》2013,93(25):3871-3892
Atomistic simulations were employed to investigate the structure and energy of asymmetric tilt grain boundaries in Cu and Al. In this work, we examine the Σ5 and Σ13 systems with a boundary plane rotated about the ? 100 ? misorientation axis, and the Σ9 and Σ11 systems rotated about the ? 110 ? misorientation axis. Asymmetric tilt grain boundary energies are calculated as a function of inclination angle and compared with an energy relationship based on faceting into the two symmetric tilt grain boundaries in each system. We find that asymmetric tilt boundaries with low index normals do not necessarily have lower energies than boundaries with similar inclination angles, contrary to previous studies. Further analysis of grain boundary structures provides insight into the asymmetric tilt grain boundary energy. The Σ5 and Σ13 systems in the ? 100 ? system agree with the aforementioned energy relationship; structures confirm that these asymmetric boundaries facet into the symmetric tilt boundaries. The Σ9 and Σ11 systems in the ? 110 ? system deviate from the idealized energy relationship. As the boundary inclination angle increases towards the Σ9 (221) and Σ11 (332) symmetric tilt boundaries, the minimum energy asymmetric boundary structures contain low index {111} and {110} planes bounding the interface region.  相似文献   

3.
The correlation among grain boundary character, carbide precipitation and deformation in the grain boundary engineering (GBE) treated Alloy 690 samples with and without pre-deformation aged at 715oC for 15?h was analysed by scanning electron microscopy and electron backscatter diffraction. The fraction of low Σ coincidence site lattice (CSL) grain boundary was enhanced by GBE treatment. The fraction of Σ3 grain boundary decreased, and most of Σ9 and Σ27 grain boundaries disappeared in the deformed GBE samples. After aging treatment, bigger carbide precipitated at coherent Σ3 grain boundary, however, most of plate-like carbide precipitated at incoherent Σ3 grain boundary disappeared in the pre-deformed GBE samples. The larger carbide precipitated on the random grain boundary in the 5% pre-deformed sample, while smaller carbide can be observed in the 15% pre-deformed sample. During the in situ tensile test of the aged GBE samples, grain boundary carbide migrated with the grain boundary migration. The slip bands go across Σ3 grain boundary directly, but cannot go across other grain boundaries. The high density of carbide plate precipitated near incoherent Σ3 and Σ9 grain boundaries can resist the evolution of slip bands. Compared to the Σ3 and Σ9 grain boundaries, Σ27 and random grain boundaries are more easily to form microcrack during deformation. The initiation of grain boundary microcrack not only related to the character of grain boundary but also related to the character of nearby grain boundaries. The phase interface of carbide and matrix is another region to initiate the microcrack.  相似文献   

4.
Wen Feng  Yinbiao Yan 《哲学杂志》2013,93(13):1057-1070
Abstract

In order to study the dependence of the grain boundary character distributions (GBCD) on the grain size, annealing treatment was carried out on 304 austenitic stainless steel with different initial grain sizes. The evolution of the GBCD was analysed by electron backscatter diffraction. The experimental results showed that abnormal grain growth (AGG) occurred when grain size was small. With a smaller initial grain size, the number density of abnormally large grains and the fraction of low-Σ CSL boundaries increased but the size of abnormally large grains decreased and the random boundaries presented a continuous network. With a larger initial grain size, the fraction of low-Σ CSL boundaries also increased as well as the size of abnormally large grains but the number density of abnormally large grains decreased and the connectivity of random boundary network was disrupted by low-Σ CSL boundaries, especially Σ3n (n = 1, 2, 3) boundaries. However, with a very large initial grain size, normal grain growth (NGG) occurred, which had no effect on the fraction of low-Σ CSL boundaries and the connectivity of random boundary network.  相似文献   

5.
A series of molecular dynamics simulations was performed on a bicrystal to which a fixed shear rate was applied parallel to the boundary plane. Under some conditions, grain boundary motion is coupled to the relative tangential motion of the two grains. In order to investigate the generality of this type of coupled shear/boundary motion, simulations were performed for both special (low Σ) and general (non-Σ) [010] tilt boundaries over a wide range of grain boundary inclinations. The data point to the existence of two critical stresses: one for coupled shear/boundary motion and the other for grain boundary sliding. For the non-Σ boundaries, the critical stress for coupled shear/boundary motion is typically smaller than that for sliding; coupled shear/boundary motion occurs for all inclinations. For Σ5 boundaries, for which the critical stress is smaller and depends on boundary inclination, coupled shear/boundary motion occurs for some, but not all inclinations.  相似文献   

6.
7.
The energy of grain boundary shears is calculated for symmetric grain boundaries (GBs) using ab initio methods and molecular-dynamic modeling in order to elucidate mechanisms that control GB shear-migration coupling in typical symmetric GBs, such as Σ3 (111), Σ5 (012), Σ5 (013) and Σ11 (113) tilt GBs, in Al bicrystal. The energy of generalized grain-boundary stacking faults (GB–SF) is determined, and the preferred directions and the energy barrier are established for grain-boundary slippage. It is shown that the relative slippage of neighboring grains at certain directions of particle shears is accompanied by conservative migration of GB in the direction perpendicular to its plain. The modeling data are comparative to known grain-boundary shear-migration coupling mechanisms in Al.  相似文献   

8.
The effect of processing and annealing temperatures on the grain boundary characters in the ultrafine-grained structure of a 304-type austenitic stainless steel was studied. An S304H steel was subjected to multidirectional forging (MDF) at 500–800°C to total strains of ~4, followed by annealing at 800–1,000°C for 30 min. The MDF resulted in the formation of ultrafine-grained microstructures with mean grain sizes of 0.28–0.85 μm depending on the processing temperature. The annealing behaviour of the ultrafine-grained steel was characterized by the development of continuous post-dynamic recrystallization including a rapid recovery followed by a gradual grain growth. The post-dynamically recrystallized grain size depended on both the deformation temperature and the annealing temperature. The recrystallization kinetics was reduced with an increase in the temperature of the preceding deformation. The grain growth during post-dynamic recrystallization was accompanied by an increase in the fraction of Σ3n CSL boundaries, which was defined by a relative change in the grain size, i.e. a ratio of the annealed grain size to that evolved by preceding warm working (D/D0). The fraction of Σ3n CSL boundaries sharply rose to approximately 0.5 in the range of D/D0 from 1 to 5, which can be considered as early stage of continuous post-dynamic recrystallization. Then, the rate of increase in the fraction of Σ3n CSL boundaries slowed down significantly in the range of D/D0 > 5. A fivefold increase in the grain size by annealing is a necessary condition to obtain approximately 50% Σ3n CSL boundaries in the recrystallized microstructure.  相似文献   

9.
龚恒风  严岩  张显生  吕伟  刘彤  任啟森 《中国物理 B》2017,26(9):93104-093104
We investigated the effect of grain boundary structures on the trapping strength of He_N(N is the number of helium atoms) defects in the grain boundaries of nickel. The results suggest that the binding energy of an interstitial helium atom to the grain boundary plane is the strongest among all sites around the plane. The He_N defect is much more stable in nickel bulk than in the grain boundary plane. Besides, the binding energy of an interstitial helium atom to a vacancy is stronger than that to a grain boundary plane. The binding strength between the grain boundary and the He _N defect increases with the defect size. Moreover, the binding strength of the He_N defect to the Σ3(12)[110] grain boundary becomes much weaker than that to other grain boundaries as the defect size increases.  相似文献   

10.
Reduced-activation ferritic/martensitic steels of Cr concentration between 2.25 and 12?wt% are candidate structural materials for next-generation nuclear reactors. In this study, molecular dynamics (MD) simulation is used to generate the displacement cascades in Fe–Cr structures with different Cr concentrations by using different primary knock-on atom (PKA) energies between 2 and 10?keV. A concentration-dependent model potential has been used to describe the interactions between Fe and Cr. Single crystals (SCs) of three different coordinate bases (e.g. [310], [510], and [530]) and bi-crystal (BC) structures with three different [001] tilt grain boundaries (GBs) (e.g. Σ5, Σ13, and Σ17) have been simulated. The Wigner–Seitz cell criterion has been used to identify the produced Frenkel pairs. The results show a marked difference between collisions observed in SCs and those in BC structures. The numbers of vacancies and interstitials are found to be significantly higher in BC structures than those found in SCs. The number of point defects exhibits a power relationship with the PKA energies; however, the Cr concentration does not seem to have any influence on the number of survived point defects. In BC models, a large fraction of the total survived point defects (between 59% and 93%) tends accumulate at the GBs, which seem to trap the generated point defects. The BC structure with Σ17?GB is found to trap more defects than Σ5 and Σ13?GBs. The defect trapping is found to be dictated by the crystallographic parameters of the GBs. For all studied GBs, self-interstitial atoms (SIAs) are easily trapped within the GB region than vacancies. An analysis of defect composition reveals an enrichment of Cr in SIAs, and in BC cases, more than half of the Cr-SIAs are found to be located within the GB region.  相似文献   

11.
12.
A three-dimensional molecular dynamics simulation is carried out to study the evolution of grains and stresses during the deposition of atoms on the (100) plane of a fcc regular crystal, using the cubic system with xy periodic boundary conditions. At the bottom an atomic surface and at the top a reflecting wall are assumed. Atoms in the system interact via the Lennard–Jones potential. During simulation the films grow according to the Volmer–Weber mode and exhibit specific shape of the stress curves. When the film becomes continuous, the stress during the growth possesses a maximum value, but later new grain boundaries are formed. Individual atoms in the grain boundaries generate compressive stress in the films.  相似文献   

13.
S. Lay  M. Loubradou 《哲学杂志》2013,93(23):2669-2679
The microstructure of the WC phase in submicron WC-Co alloys has been investigated by transmission electron microscopy. The existence of clusters formed by several grains mainly related by Σ =1 and Σ=2 high-coincidence orientation relationships is shown. The features of these grain boundaries are studied using high-resolution electron microscopy. Two cases of Σ =1 orientation are investigated. In one case, the boundary contrast arises from the presence at the interface of a nanometric intermediate layer. In the other case, a grain boundary separating domains with different carbon positions is evidenced. Investigations of the starting WC powder indicate the existence of clusters already in particles and reveal the polygonal shape of WC grains before sintering. Some microstructure characteristics of the clusters suggest that the majority of clusters observed in the sintered material arise from the powder.  相似文献   

14.
A BaTi4O9 film was prepared on a Pt/Ti/SiO2/Si substrate by a laser chemical vapor deposition method and was investigated by impedance spectroscopy over ranges of temperature (300–1073 K) and frequency (102–107 Hz). Plots between real and imaginary parts of the impedance (Z′ and Z′′) suggest the presence of two relaxation regimes, which were attributed to grain and grain boundary responses. The conduction of both grains and grain boundaries obeys the Arrhenius format with activation energies of respectively 1.45 and 1.24 eV. The close activation energies indicate that the conduction in BaTi4O9 film is mainly by oxygen vacancies.  相似文献   

15.
The localization of Fe atoms in the process of mechanical alloying of a Mo powder composite with 8 at % O at boundaries of the bcc Mo grains has been investigated by Mössbauer spectroscopy on impurity 57Fe isotope atoms (1 at %), X-ray diffraction, and Auger spectrometry. The process begins with the formation of a nanostructure (~10 nm) in bcc Mo and ends with the formation of a bcc supersaturated solid solution with O atoms at interstitial positions and Fe atoms at substitutional positions. The presence of oxygen in the boundaries of bcc Mo grains leads to an extraordinarily large isomer shift (2 mm/s with respect to α-Fe) for the grainboundary component in the Mössbauer spectrum. This circumstance makes it possible to consider 57Fe-O complexes as new probes for studying grain boundaries of powder nanocrystalline materials. As a result, the following three structural components have been identified in the mechanically activated system: a grain boundary and distorted near-boundary regions with the common name interface and a grain with the perfect (defect-free) structure. For powder nanocrystalline (~10 nm) materials subjected to intense mechanical treatment in a planetary ball mill, the widths of the unrelaxed grain boundary and interface average over the entire volume of particles have been experimentally estimated as 0.2 and 1 nm, respectively.  相似文献   

16.
The results of calculations of the atomic and electron structure of Pd and TiFe with symmetrical Σ5 tilt grain boundaries obtained using the methods of electron density functional theory are reported. Hydrogen sorption at tilt grain boundaries and corresponding surfaces is considered. It is shown that the hydrogen absorption energy increases in magnitude by ∼0.2 eV at the Pd Σ5(210) grain boundary and by ∼0.5 eV in B2-TiFe with the Σ5(310) grain boundary. The binding energy of hydrogen in palladium, as well as in TiFe, in the most preferred positions at the surface is higher than near grain boundaries. It is found that, as in the case of a defect-free material, the following tendency is observed at a symmetrical tilt grain boundary: the strong bond of the impurity at the grain boundary in the metal or alloy matrix reduces the sorption energy of hydrogen.  相似文献   

17.
Atomistic mechanisms of hydrogen-induced cracking along a bcc Fe Σ3(111) symmetrical tilt grain boundary (GB) have been studied by first-principles calculations. The mobile and immobile effects of hydrogen on the GB decohesion are analyzed by calculating the dependence of hydrogen segregation energy on the coverage relevant to the repulsive interaction among segregated hydrogen atoms at the GB and on its fracture surfaces, together with generalizing McLean's formula. It was found that the segregation of combined mobile and immobile hydrogen atoms from the bulk and/or GB on the fracture surfaces causes much stronger reduction (70–80%) in the GB cohesive energy. It can occur even at a very low bulk hydrogen content of about 10?9 atomic fraction during slow cracking. This is in contrast to only 10–20% decohesion induced by immobile hydrogen at much higher hydrogen content during fast cracking. The mobile effect of hydrogen, giving rise to a profound reduction in the GB cohesive energy, is a key factor controlling the mechanism of hydrogen-induced GB cracking.  相似文献   

18.
Diffusion coefficients of tracer 18O atoms at boundaries of nanograins of LaMnO3 + δ oxide have been measured in the temperature range of 400–500°C. The samples of the nanocrystalline oxide are prepared with the use of the shockwave loading method. The concentration profile of the tracer atoms after diffusion annealing is measured with the use of the nuclear microanalysis method. The activation energies of the grain boundary diffusion amounts to about 2 eV and the boundary width is ~0.05 nm. The measured coefficients of the grain boundary diffusion at 500°C exceed the corresponding coefficients of the volume diffusion by seven orders of magnitude.  相似文献   

19.
We investigated an influence of hydrogen plasma treatment on electrical properties of shaped silicon polycrystals. Hydrogen penetration into polycrystalline silicon is demonstrated to depend on the state of the crystal (as-grown or annealed) and type of grain boundary (general or weakly deviated from special orientations). It is found that interaction of atomic hydrogen with grain boundaries can result not only in decrease of their electrical activity, but also in increase of potential barrier height at relatively high (more than 2 × 1018 cm–2) doses of incorporated hydrogen. This phenomenon is explained by a phenomenological model which takes into account passivation of grain boundary dangling bonds and boron atoms in the bulk as two main mechanisms controlling hydrogenation effect.  相似文献   

20.
Atomic recoil events on free surfaces orthogonal to two different anti-phase boundaries (APBs) and two grain boundaries (GBs) in Ni3Al are simulated using molecular dynamics methods. The threshold energy for sputtering, E sp, and adatom creation, E ad, are determined as a function of recoil direction. The study is relevant to FEG STEM (a scanning transmission electron microscope fitted with a field emission gun) experiments on preferential Al sputtering and/or enhancement of the Ni–Al ratio near boundaries. Surfaces intersected by {110} and {111} APBs have minimum E sp of 6.5?eV for an Al atom on the Ni–Al mixed (M) surface, which is close to the value of 6.0?eV for a perfect M surface. High values of E sp of an Al atom generally occur at a large angle to the surface normal and depend strongly on the detailed atomic configuration of the surface. The mean E sp, averaged over all recoil directions, reveals that APBs have a small effect on the threshold sputtering. However, the results for E ad imply that an electron beam could create more Al adatoms on surfaces intersected by APBs than on those without. The equilibrium, minimum energy structures for a (001) surface intersected by either Σ5[001](210) or Σ25[001](340) symmetric tilt grain boundaries are computed. E sp for surface Al atoms near these GBs increases monotonically with increasing recoil angle to the surface normal, with a minimum value, which is only about 1?eV different from that obtained for a perfect surface. Temperature up to 300?K has no effect on this result. It is concluded that the experimental observations of preferential sputtering are due to effects beyond those for E sp studied here. Possible reasons for this are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号