首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Monte Carlo method in its grand ensemble variant (GCMC) is used in order to study the hydrogen adsorption (77 K) characteristics of novel carbon structures, namely Carbon Cones (CCs). CCs are conical shaped curved graphitic sheets, with five different apex angles. CC structures with correct bonding topology were developed via atomistic-molecular simulations, while GCMC simulations of hydrogen adsorption were carried out on the five different apex angle structures. Emphasis has been given on the adsorption properties inside the cones and it was found that cone tips are characterized by enhanced adsorbability. The results were also compared with similar calculations on carbon nanotubes.  相似文献   

2.
The influence of size of solvent molecules on the structural and thermodynamic properties of the interface between the electrode and electrolyte, using the solvent primitive model, was studied by grand canonical Monte Carlo (GCMC) simulations. The computer simulation results are compared with those obtained from the modified Poisson–Boltzmann (MPB) theory. The ionic singlet distribution functions show that the solvent molecules of low diameter favour the counter ion adsorption on the electrode. With increasing diameter of the solvent molecules, the mean electrostatic potential increases, while the integral and differential capacitances decrease. The integral capacitance curves obtained by MPB theory are in qualitative agreement with those obtained by the GCMC simulation although the theoretical results are overestimated.  相似文献   

3.
Depletion interactions in colloidal suspensions confined between two parallel plates are investigated by using acceptance ratio method with grand canonical ensemble Monte Carlo simulation. The numerical results show that both the depletion potential and depletion force are affected by the confinement from the two parallel plates. Furthermore, it is found that in the grand canonical ensemble Monte Carlo simulation, the depletion interactions are strongly affected by the generalized chemical potential.  相似文献   

4.
B. HRIBAR  V. VLACHY  O. PIZIO 《Molecular physics》2013,111(19):3093-3103
A theoretical study is reported of a quenched-annealed system where both components were modelled as size symmetric +1: ?1 primitive model electrolytes. The partly quenched system was studied by using the replica Ornstein-Zernike (ROZ) integral equation theory in the hypernetted chain (HNC) approximation and grand canonical Monte Carlo (GCMC) simulations. The primary interest was the excess Gibbs free energy (logarithm of the mean activity coefficient) of the adsorbed electrolyte and an expression for this quantity, valid within the ROZ/HNC formalism, was derived. The effects of the concentration of matrix ions, pre-quenching conditions, and the electrolyte and solvent conditions (concentration, temperature, dielectric constant) on the structure and thermodynamics of the adsorbed electrolyte were examined. The numerical results indicated that the mean activity of the adsorbed electrolyte differs substantially from the corresponding quantity for the bulk electrolyte. The excess chemical potential depends strongly on the concentration of charged obstacles and matrix preparation, and also on the temperature and dielectric constant of the annealed electrolyte solution. Newly generated computer simulation results for the structural and thermodynamic parameters, obtained by the grand canonical Monte Carlo method, were used to assess the validity of the ROZ/HNC approximation. It was shown that the ROZ/HNC theory yields good agreement with the computer simulations.  相似文献   

5.
Results are presented for grand canonical Monte Carlo (GCMC) and both equilibrium and non-equilibrium molecular dynamics simulations (EMD and NEMD) conducted over a range of densities and temperatures that span the two-phase coexistence and supercritical regions for a pure fluid adsorbed within a model crystalline nanopore. The GCMC simulations provided the low temperature coexistence points for the open pore fluid and were used to locate the capillary critical temperature for the system. The equilibrium configurational states obtained from these simulations were then used as input data for the EMD simulations in which the self-diffusion coefficients were computed using the Einstein equation. NEMD colour diffusion simulations were also conducted to validate the use of a system averaged Einstein analysis for this inhomogeneous fluid. In all cases excellent agreement was observed between the equilibrium (linear response theory) predictions for the diffusivities and non-equilibrium colour diffusivities. The simulation results are also compared with a recently published quasi-hydrodynamic theory of Pozhar and Gubbins (Pozhar, L. A., and Gubbins, K. E., 1993, J. Chem. Phys., 99, 8970; 1997, Phys. Rev. E, 56, 5367.). The model fluid and the nature of the fluid wall interactions employed conform to the decomposition of the particle–particle interaction potential explicitly used by Pozhar and Gubbins. The local self-diffusivity was calculated from the local fluid–fluid and fluid wall hard core collision frequencies. While this theory provides reasonable results at moderate pore fluid densities, poor agreement is observed in the low density limit.  相似文献   

6.
This paper applies a density functional theory(DFT) and grand canonical Monte Carlo simulations(GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC 3 nanotubes and carbon nanotubes.The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes.Furthermore,the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions.The present results have shown that with both computational methods,the hydrogen storage capacity of BC 3 nanotubes is superior to that of carbon nanotubes.The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.  相似文献   

7.
The adsorption isotherms of various alkenes and their mixtures in zeolites such as silicalite-1 (MFI-type), theta-1 (TON-type), and deca-dodecasil 3R (DDR-type) were calculated using the grand canonical Monte Carlo (GCMC) approach. Additionally, the adsorption of alkene–alkane mixtures was simulated. The GCMC approach was combined with the configurational-bias Monte Carlo (CBMC) method. Effective Lennard–Jones parameters for the interaction between the oxygen atoms of all-silica zeolites and the sp2-hybridized groups of linear alkenes were determined using a united atom force field. They were adjusted to the experimental adsorption data of silicalite-1 (MFI). The inflection behaviour of the 1-heptene isotherm was investigated in detail. It is shown that, in the inflection region, the 1-heptene molecules alter their end-to-end length depending on their location. The occurrence of a maximum in the mixture adsorption isotherms is attributed to two effects: entropic effects and non-ideality effects. From the mixture simulations some general conclusions concerning the separation of hydrocarbons with silicalite-1 can be drawn. The transferability of the Lennard–Jones parameters to other zeolites was investigated. Simulations of adsorption isotherms in the zeolites theta-1 and DD3R and their comparison with experimental data indicate the possibility of transferring the parameters to other all-silica zeolites.  相似文献   

8.
We investigate methods for the treatment of long-range interactions in the context of grand canonical Monte Carlo (GCMC) simulations of water adsorption in slit-shaped activated carbon pores. Several approaches, ranging from the simple minimum image convention to the more complex two-dimensional Ewald summations, are implemented and compared with respect to accuracy and speed of computation. The performance of some of these methods in GCMC is found to be significantly different from that in molecular dynamics applications. Of all the methods studied, one proposed by Heyes and van Swol was the most promising, providing the best balance between accuracy and speed. In our application, it was shown to be about 2 times faster than the fastest of the two-dimensional Ewald methods. We expect this conclusion to apply in general to systems that are periodic in two dimensions and finite in the third.  相似文献   

9.
A combination of grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations (GCMD simulations) was performed to investigate the effect of the difference in chemical potential between the pore surface and gas phase on the adsorption and desorption kinetics of water in a hydrophilic mesopore. The chemical potential of water vapour was controlled by the GCMC method and the adsorption/desorption of water to/from a hydrophilic mesopore was simulated by the MD method. The calculation results showed that when the stepwise change in chemical potential of the gas phase was small, the initial rate of adsorption or desorption of water could be well predicted by the kinetic theory of gases. However, the rate greatly varied depending on the transport mechanisms of water in mesopores such as film flow and column flow. On the other hand, when the stepwise change in chemical potential was large, the initial rate was overestimated by the kinetic theory of gases; however, it did not change greatly with time.  相似文献   

10.
The Monte Carlo method in its grand ensemble variant (GCMC) is used in combination with experimental data in order to characterize microporous carbons and obtain the optimal pore size distribution (PSD). In particular, the method is applied in the case of AX-21 carbon. Adsorption isotherms of CO2 (253 and 298 K) and H2 (77 K) up to 20 bar have been measured, while the computed isotherms resulted from the GCMC simulations for several pore widths up to 3.0 nm. For the case of H2 at 77 K quantum corrections were introduced with the application of the Feynman-Hibbs (FH) effective potential. The adsorption isotherms were used either individually or in a combined manner in order to deduce PSDs and their reliability was examined by the ability to predict the experimental adsorption isotherms. The combined approach was found to be capable of reproducing more accurately all the available experimental isotherms.  相似文献   

11.
The chemical potential for a two-component Lennard-Jones fluid with associative interaction between opposite species promoting the formation of dimers is calculated using osmotic Monte Carlo (OMC) canonical ensemble simulations. Grand canonical Monte Carlo simulations also are performed to verify the accuracy of the OMC approach. The data from both methods agree very well for thermodynamic states with different degrees of dimerization. It follows that the OMC is a promising approach for the determination of the thermodynamics of and equilibria between associating and non-associating fluids and associating fluid mixtures.  相似文献   

12.
Molecular dynamics simulations of Lennard-Jones binary mixtures were performed to obtain phase equilibria and thermodynamic properties for the liquid—vapour interface. The dispersion interactions were handled using the lattice sum method where the full interaction is obtained and there is no requirement for any long range correction to the properties. The application of the method using the Lorentz—Berthelot combining rule for unlike interactions is discussed. The coexisting densities, adsorption of molecules at the interface and surface tension are the main results of this work. Coexisting properties were compared with Gibbs ensemble Monte Carlo results and with those of the grand canonical Monte Carlo method combined with the histogram reweighting technique, and good agreement was found. The lattice sum method results were compared with those of the spherically truncated and shifted potential to analyse the truncation effect. The adsorption of molecules at the interface and surface tension increase with interaction.  相似文献   

13.
The bridge function required to yield a singlet integral equation (IE) up to the second order in density expansion for the hard sphere fluid confined in a slit-pore is evaluated. The slit-fluid bridge function can be divided into wall-particle bridge diagrams with h b-bond, which were evaluated by recently proposed Transition Matrix Monte Carlo (TMMC) Mayer-sampling method. The bulk-fluid total correlation function h b(r) used in cluster integrals is determined by solution of the bulk-fluid Ornstein–Zernike (OZ) equation with a hypernetted chain closure (HNC). The calculation is performed for the reduced density of bulk fluid in equilibrium with the fluid in slit-pores from 0.3 to 0.7 with narrow slit width of 3.0σ and 4.0σ. The quantity of the slit-fluid bridge function is assessed by comparison of the density profile obtained from the singlet IE theory and the grand canonical Monte Carlo (GCMC) simulation. Good agreement between the proposed approach and the GCMC data is observed. The reduced normal pressure is also calculated, and agrees well with the simulation data at low to medium densities but becomes a little larger at high density. It is expected that the result can be improved by adding higher order bridge coefficients. The direct evaluation of the slit-fluid bridge function seems to be practical since a great improvement of the quality of the singlet IE theory has been achieved for predicting the structural and thermodynamic properties of fluids confined in narrow slit pores.  相似文献   

14.
The interplay of strong interaction and strong disorder, as contained in the Anderson-Hubbard model, is addressed using two nonperturbative numerical methods: the Lanczos algorithm in the grand canonical ensemble at zero temperature and quantum Monte Carlo simulations. We find distinctive evidence for a zero-energy anomaly which is robust upon variation of doping, disorder, and interaction strength. Its similarities to, and differences from, pseudogap formation in other contexts, including perturbative treatments of interactions and disorder, classical theories of localized charges, and in the clean Hubbard model, are discussed.  相似文献   

15.
沈超  胡雅婷  周硕  马晓兰  李华 《物理学报》2013,62(3):38801-038801
采用巨正则系综蒙特卡罗方法, 通过含有此方法模块的GULP软件, 系统地研究了扶手椅式单壁碳纳米管在低温和常温下的储氢性能, 给出了5种半径的扶手椅管在液氮温度(77 K)和常温(280 K)下的吸附等温线, 同一管径在不同温度不同压强下氢分子在碳纳米管中的分布构型图等. 对77 K和280 K下不同压强不同管径的碳纳米管储氢能力做了较为全面的对比分析, 最后根据模拟计算的结果, 对碳纳米管储氢能力的强化提出了一些建设性意见.  相似文献   

16.
The structure of a hard sphere fluid confined by model slit and cylindrical pores is investigated. Results from grand canonical Monte Carlo (GCMC) simulations and from the hypernetted chain/mean spherical approximation (HNC/MSA) equation are reported. GCMC results are compared with those from the HNC/MSA equation, and agreement is good. The effect of confinement on liquids at the same chemical potentials is that the absorption of the hard sphere fluid into the pores decreases with increasing confinement, i.e., when going from planar to cylindrical geometry or by narrowing the pores. The adsorption on the pore walls has, in general, the opposite behaviour. For high bulk concentrations and certain values of cylindrical pore diameter the concentration profile is higher at the centre of the pore than next to the pore wall. A very strong, but continuous, transition occurs in the concentration profile, as a function of the cylinder's diameter. These results could be of some interest in catalysis studies.  相似文献   

17.
氢气分子在沸石中的吸附模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用巨正则蒙特卡罗方法模拟了氢气在沸石中的吸附行为,并采用Dubinin-Astakhov微孔分析方法,分析了沸石结构对储氢量大小的影响,总结了影响储氢量大小的物理因素,该工作有利于指导合理的设计与合成储存材料,为改善材料储氢能力提供了有力的理论支撑. 关键词: 储氢 吸附等温线 巨正则蒙特卡罗  相似文献   

18.
D. Tanguy  T. Magnin 《哲学杂志》2013,93(35):3995-4009
The goal of this work is to make a contribution to the understanding of the microscopic mechanisms of H-induced intergranular damage. We develop an embedded-atom method interatomic potential for H in the Al–Mg system with the main aim of reproducing the current understanding of H trapping to vacancies. This model is used to investigate the effect of the Mg–H affinity on the segregation of H on the Σ =5 (310) [001] grain boundary. Monte Carlo simulations in the grand canonical ensemble are used to estimate equilibrium H concentrations at this boundary at T=300?K. A large structure change, associated with the H enrichment of the grain boundary, is reported. The implications on damage to the interface are discussed.  相似文献   

19.
使用分子动力学(MD)和巨正则蒙特卡罗(GCMC)的方法,对H_2,D_2,T_2在溴化丁基橡胶(BIIR)中的扩散和溶解行为进行了计算模拟,运用自由体积理论探讨了气体分子在聚合物内的扩散机理,并得出气体的运动轨迹。结果表明:对氢及其同位素而言,质量越小,运动速度越快,扩散系数越大,溶解度系数比较接近,渗透系数的模拟值与实验值基本吻合,为提高材料的阻隔性能提供了一定理论基础,同时预测出硫化溴化丁基橡胶对氚水也有较好的阻隔性能。  相似文献   

20.
Surface heterogeneity of activated carbons is usually characterized by adsorption energy distribution (AED) functions which can be estimated from the experimental adsorption isotherms by inverting integral equation. The experimental data of phenol adsorption from aqueous solution on activated carbons prepared from polyacrylonitrile (PAN) and polyethylene terephthalate (PET) have been taken from literature. AED functions for phenol adsorption, generated by application of regularization method have been verified. The Grand Canonical Monte Carlo (GCMC) simulation technique has been used as verification tool. The definitive stage of verification was comparison of experimental adsorption data and those obtained by utilization GCMC simulations. Necessary information for performing of simulations has been provided by parameters of AED functions calculated by regularization method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号