首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A surface-based approach is presented to study the interactions of Aβ12-28-Cys assembled on gold surfaces with Congo red (CR) and a β-sheet breaker (BSB) peptide. The various aspects of the peptide film have been examined using different electrochemical and surface analytical techniques. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) results using redox probes [Fe(CN)(6)](3-/4-) show that Aβ12-28-Cys on gold forms a stable and reproducible blocking film. EIS analysis shows that CR and BSB have different effects on the electrochemical properties of Aβ12-28-Cys films, presumably due to changes in the interactions between the film and CR and BSB. EIS results indicate that in the case of CR film resistance decreases significantly presumably due to better penetration of the solution-based redox probe into the film, whereas in the case of BSB, the film resistance increases. We interpret this difference to BSB being able to interact with the Aβ12-28-Cys on the surface and presumably forming a film that presents a higher resistance for electron transfer from the redox probe to the solution.  相似文献   

2.
The use of 3-aminopyrazole derivatives as beta-sheet templates is investigated using a series of ferrocenoyl (Fc)-dipeptides (Fc-Gly(2)-OEt, Fc-Ala(2)-OBzl, Fc-Leu-Phe-OMe, Fc-Val-Phe-OMe, Fc-Phe(2)-OMe, Fc-Leu(2)-OMe, Fc-Val(2)-OMe). The synthesis and full characterization are reported. The solid-state structures of Fc-Gly(2)-OMe and Fc-Leu-Phe-OMe show extensive hydrogen bonding of the podand peptide substituents, resulting in the formation of supramolecular Fc-dipeptide assemblies. For Fc-Gly(2)-OMe, this can be described as a parallel beta-sheet, whereas intermolecular interactions in Fc-Leu-Phe-OMe result in the formation of supramolecular helical structures. The saturation titrations of Fc-dipeptides with 3-amino-5-methylpyrazole (3-AMP) and 3-trifluoroacetylamido-5-methylpyrazole (3-TFAc-AMP) show a 1:1 interaction of the Fc-peptide with the aminopyrazole derivatives. IR measurements in solution confirm binding to the top face of the Fc-dipeptide and the involvement of the Fc-C=O and the ester C=O groups in establishing H-bonding interactions with the 3-TFAc-AMP. However, binding constants in chloroform are low and range from 8 to 27 M(-1), which correspond to binding energies of 5-7 kJ mol(-1). In higher polarity solvents, such as acetonitrile or acetone, the binding constants are below 5 M(-1), emphasizing the limited utility of 3-AMP derivatives as beta-sheet templates. Electrochemical measurements confirm the weak interactions between the various Fc-dipeptides and 3-TFAc-AMP. Typical shifts in the redox potential of the Fc moiety are in the range 0-20 mV. Attempts to modify 3-AMP at the 3-position by carbodiimide coupling with amino acid derivatives and, thus, enhance the binding to the Fc-peptides resulted in 2-amino acid substituted 3-AMP derivatives. Substitution at the 2-position blocks the binding site, and no interactions with Fc-dipeptides are observed.  相似文献   

3.
Hierarchical self-assembly of disubstituted ferrocene (Fc)-peptide conjugates that possess Gly-Val-Phe and Gly-Val-Phe-Phe peptide substituents leads to the formation of nano- and micro-sized assemblies. Hydrogen-bonding and hydrophobic interactions provide directionality to the assembly patterns. The self-assembling behavior of these compounds was studied in solution by using (1)H?NMR and circular dichroism (CD) spectroscopies. In the solid state, attenuated total reflectance (ATR) FTIR spectroscopy, single-crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM) methods were used. Spontaneous self-assembly of Fc-peptides through intra- and intermolecular hydrogen-bonding interactions induces supramolecular assemblies, which further associate and give rise to fibers, large fibrous crystals, and twisted ropes. In the case of Fc[CO-Gly-Val-Phe-OMe](2) (1), molecules initially interact to form pleated sheets that undergo association into long fibers that form bundles and rectangular crystalline cuboids. Molecular offsets and defects, such as screw dislocations and solvent effects that occur during crystal growth, induce the formation of helical arrangements, ultimately leading to large twisted ropes. By contrast, the Fc-tetrapeptide conjugate Fc[CO-Gly-Val-Phe-Phe-OMe](2) (2) forms a network of nanofibers at the supramolecular level, presumably due to the additional hydrogen-bonding and hydrophobic interactions that stem from the additional Phe residues.  相似文献   

4.
Dinuclear and trinuclear ferrocene complexes {[Fc2BMe2]Li, [Fc-BMe2-fc-BMe2-Fc]Li2, Fc2B(pyind), [Fc2B(bipy)]PF6, [Fc-B(bipy)-fc-B(bipy)-Fc](PF6)2} bearing anionic, uncharged, and cationic four-coordinate boron bridges have been synthesized (Fc: ferrocenyl; fc: 1,1'-ferrocenylene; pyind: 5-fluoro-2-(2'-pyridyl)indolyl; bipy: 2,2'-bipyridyl). The molecular structures of [Fc2BMe2]Li(12-crown-4)2, [Fc-BMe2-fc-BMe2-Fc](Li(12-crown-4)2)2, Fc2B(pyind), and [Fc2B(bipy)]PF6 were determined by X-ray crystallography. The anionic aggregates [Fc2BMe2]- and [Fc-BMe2-fc-BMe2-Fc]2- are very sensitive to air and moisture whereas bromide salts of their cationic counterparts [Fc(2)B(bipy)]+ and [Fc-B(bipy)-fc-B(bipy)-Fc]2+ may be dissolved in water without decomposition. Cyclic voltammograms of the diferrocene species show two well-resolved one-electron transitions separated by 0.21 V ([Fc2BMe2]Li; Eo' = -0.43 V, -0.64 V; vs. FcH/FcH+), 0.18 V (Fc2B(pyind); Eo' = -0.03 V, -0.21 V), and 0.16 V ([Fc2B(bipy)]PF6; Eo' = +0.23 V, +0.07 V), which indicates electronic interactions between the two ferrocenyl substituents. Two redox waves with an intensity ratio of 1:2 are observed in the cyclic voltammograms of the trinuclear derivatives [Fc-BMe2-fc-BMe2-Fc]Li2 and [Fc-B(bipy)-fc-B(bipy)-Fc](PF6)2. In the case of the BMe(2)-bridged species, the electrochemically unique central ferrocenylene unit is oxidized at a much more cathodic potential value (Eo' = -1.21 V) than the two terminal ferrocenyl substituents (Eo' = -0.51 V). The opposite is true in the case of the B(bipy)-bridged trimer where oxidation of the terminal ferrocenyl groups (Eo' = +0.03 V) precedes oxidation of the internal iron atom (Eo' = +0.26 V). The Fe(II)/Fe(III) redox potentials of the mono- and dianionic species differ to a much larger extent from the redox potential of parent ferrocene (Eo' = 0 V) than the Eo' values of the corresponding mono- and dicationic derivatives. Apart from electrostatic interactions, the electrochemical properties of BMe2- and B(bipy)-bridged oligoferrocenes are determined by the pronounced positive inductive effect of triorganoborate substituents together with positive sigma/pi* hyperconjugation on the one hand and ferrocene-to-B(bipy) charge transfer on the other.  相似文献   

5.
Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ(17-42) protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ(17-42) protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ(17-42) are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ(17-42) protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.  相似文献   

6.
Two peptide-amphiphiles (PAs), 2C(12)-Lys-Aβ(12-17) and C(12)-Aβ(11-17)-C(12), were constructed with two alkyl chains attached to a key fragment of amyloid β-peptide (Aβ(11-17)) at different positions. The two alkyl chains of 2C(12)-Lys-Aβ(12-17) were attached to the same terminus of Aβ(12-17), while the two alkyl chains of C(12)-Aβ(11-17)-C(12) were separately attached to each terminus of Aβ(11-17). The self-assembly behavior of both the PAs in aqueous solutions was studied at 25 °C and at pHs 3.0, 4.5, 8.5, and 11.0, focusing on the effects of the attached positions of hydrophobic chains to Aβ(11-17) and the net charge quantity of the Aβ(11-17) headgroup. Cryogenic transmission electron microscopy and atomic force microscopy show that 2C(12)-Lys-Aβ(12-17) self-assembles into long stable fibrils over the entire pH range, while C(12)-Aβ(11-17)-C(12) forms short twisted ribbons and lamellae by adjusting pHs. The above fibrils, ribbons, and lamellae are generated by the lateral association of nanofibrils. Circular dichroism spectroscopy suggests the formation of β-sheet structure with twist and disorder to different extents in the aggregates of both the PAs. Some of the C(12)-Aβ(11-17)-C(12) molecules adopt turn conformation with the weakly charged peptide sequence, and the Fourier transform infrared spectroscopy indicates that the turn content increases with the pH increase. This work provides additional basis for the manipulations of the PA's nanostructures and will lead to the development of tunable nanostructure materials.  相似文献   

7.
Nanoassemblies (NAs) with sizes ranging from 60 to 160nm were spontaneously formed in water after mixing a host polymer (polymerized cyclodextrin (pβ-CD)) and a guest polymer (dextran grafted with lauroyl side chains (MD)). The combination of microscopy, dynamic light scattering (DLS), nuclear magnetic resonance ((1)H NMR), isothermal titration calorimetry (ITC) and molecular modelling was used to investigate the parameters which govern the association between MD and pβ-CD. Remarkably, when pβ-CD was progressively added to a solution of MD, NAs with a well-defined diameter were spontaneously formed and their diameter was constant whatever the composition of the system. According to NMR data, almost all the alkyl chains of MD were included into CDs' cavities of the polymer when the molar ratio lauroyl chain (C(12))/CD was ?1. The hydrophobic interaction between C(12) and the hydrophobic cavities of CDs appears as the main driving force for NAs' formation, with a minor contribution arising from van der Waals' interactions. The inclusion of C(12) into β-CD cavities is almost a completely enthalpy-driven process, whereas the MD-C(12)/pβ-CD interaction was found to be an entropy-driven process. Major conclusions which can be drawn from these studies are that the interactions between the two polymers are restricted neither by the MD substitution yield, nor by the micellization of MD. The simultaneous effects of several CD linked together in pβ-CD and of many alkyl chains grafted on dextran were necessary to generate these stable NAs.  相似文献   

8.
The self-assembly of nanotubes from chiral amphiphiles and peptide mimics is still poorly understood. Here, we present the first complete path to nanotubes by chiral self-assembly studied with C(12)-β(12) (N-α-lauryl-lysyl-aminolauryl-lysyl-amide), a molecule designed to have unique hybrid architecture. Using the technique of direct-imaging cryo-transmission electron microscopy (cryo-TEM), we show the time-evolution from micelles of C(12)-β(12) to closed nanotubes, passing through several types of one-dimensional (1-D) intermediates such as elongated fibrils, twisted ribbons, and coiled helical ribbons. Scattering and diffraction techniques confirm that the fundamental unit is a monolayer lamella of C(12)-β(12), with the hydrophobic tails in the gel state and β-sheet arrangement. The lamellae are held together by a combination of hydrophobic interactions, and two sets of hydrogen-bonding networks, supporting C(12)-β(12) monomers assembly into fibrils and associating fibrils into ribbons. We further show that neither the "growing width" model nor the "closing pitch" model accurately describe the process of nanotube formation, and both ribbon width and pitch grow with maturation. Additionally, our data exclusively indicate that twisted ribbons are the precursors for coiled ribbons, and the latter structures give rise to nanotubes, and we show chirality is a key requirement for nanotube formation.  相似文献   

9.
Supramolecular assembly of peptides and proteins into amyloid fibrils is of multifold interest, going from materials science to physiopathology. The binding of metal ions to amyloidogenic peptides is associated with several amyloid diseases, and amyloids with incorporated metal ions are of interest in nanotechnology. Understanding the mechanisms of amyloid formation and the role of metal ions can improve strategies toward the prevention of this process and enable potential applications in nanotechnology. Here, studies on Zn(II) binding to the amyloidogenic peptide Aβ11-28 are reported. Zn(II) modulates the Aβ11-28 aggregation, in terms of kinetics and fibril structures. Structural studies suggest that Aβ11-28 binds Zn(II) by amino acid residues Glu11 and His14 and that Zn(II) is rapidly exchanged between peptides. Structural and aggregation data indicate that Zn(II) binding induces the formation of the dimeric Zn(II)(1)(Aβ11-28)(2) species, which is the building block of fibrillar aggregates and explains why Zn(II) binding accelerates Aβ11-28 aggregation. Moreover, transient Zn(II) binding, even briefly, was enough to promote fibril formation, but the final structure resembled that of apo-Aβ11-28 amyloids. Also, seeding experiments, i.e., the addition of fibrillar Zn(II)(1)(Aβ11-28)(2) to the apo-Aβ11-28 peptide, induced aggregation but not propagation of the Zn(II)(1)(Aβ11-28)(2)-type fibrils. This can be explained by the dynamic Zn(II) binding between soluble and aggregated Aβ11-28. As a consequence, dynamic Zn(II) binding has a strong impact on the aggregation behavior of the Aβ11-28 peptide and might be a relevant and so far little regarded parameter in other systems of metal ions and amyloidogenic peptides.  相似文献   

10.
The aggregation process of beta-amyloid peptide Abeta into amyloid is strongly associated with the pathology of Alzheimer's disease (AD). Aggregation may involve a transition of an alpha helix in Abeta(1-28) into beta sheets and interactions between residues 18-20 of the "Abeta amyloid core." We applied an i, i+4 cyclic conformational constraint to the Abeta amyloid core and devised side chain-to-side chain lactam-bridged cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28). In contrast to Abeta(1-28) and [Lys(17), Asp(21)]Abeta(1-28), cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) was not able to form beta sheets and cytotoxic amyloid aggregates. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) was able to interact with Abeta(1-28) and to inhibit amyloid formation and cytotoxicity. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) also interacted with Abeta(1-40) and interfered with its amyloidogenesis. Cyclo(17, 21)-[Lys(17), Asp(21)]Abeta(1-28) or similarly constrained Abeta sequences may find therapeutic and diagnostic applications in AD.  相似文献   

11.
We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with tunable optical properties. Protonated polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and anionic polystyrene-block-poly(acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the opposite BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (M(w)) of the constituents. PS(7K)-b-P4VP(28K)/PS(2K)-b-PAA(8K) films prepared at pH 4 (for PS(7K)-b-P4VP(28K)) and pH 6 (for PS(2K)-b-PAA(8K)) are highly nanoporous and antireflective. In contrast, PS(7K)-b-P4VP(28K)/PS(2K)-b-PAA(8K) films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS(2K)-b-PAA(8K). Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS(36K)-b-P4VP(12K)/PS(16K)-b-PAA(4K) at pH 4/4) were also nanoporous. This is attributed to a decrease in interdigitation between the adjacent corona shells of the low M(w) BCMs, thus creating more void space between the micelles. Multilayer films with antireflective and photochromic properties were obtained by incorporating a water-insoluble photochromic dye (spiropyran) into the hydrophobic PS core of the BCMs assembled in the films. The optical properties of these films can be modulated by UV irradiation to selectively and reversibly control the transmission of light. Light transmission of higher than 99% was observed with accompanying photochromism in the (PS(7K)-b-P4VP(28K)/PS(2K)-b-PAA(8K)) multilayer films assembled at pH 4/6. Our approach highlights the potential to incorporate a range of materials, ranging from conventional hydrophilic materials with specific interactions to hydrophobic compounds, into the assembled BCMs to yield multifunctional nanoporous films.  相似文献   

12.
Using blind dock method,we find that thioflavin-T(ThT) can bind to both monomers and fibrils of the full-length β-amyloid peptide(Aβ1-42) and has a higher binding affinity to the fibrils.It is shown that the hydrophobic interaction between the ligand(ThT) and substrate(Aβ1-42) are stronger than hydrogen bonds.Furthermore,ThT tends to be located near the C-terminus of Aβ monomer through hydrophobic and electrostatic interactions,while it tends to contact the residues Met35 and Gly27 of the fibril surface mainly through hydrophobic interaction.Finally,according to the docking results and ThT fluorescence assay,a kinetic equation is proposed to deduce the aggregation rate coefficient of Aβ1-42.  相似文献   

13.
Step by step: The cluster [3,3'-Co(1,2-C(2)B(9)H(11))(2)](-) is an excellent platform for making a stepwise tunable redox potential system by dehydroiodination. With the addition of up to eight iodine substituents (purple; see picture), there is a fall in the E(1/2)(Co(III)/Co(II)) value from -1.80?V to -0.68?V (vs. Fc(+)/Fc; Fc = ferrocene). A practical application of this tunability has been observed in the growth of polypyrrole.  相似文献   

14.
The abnormal aggregation of amyloid-beta(Aβ) has been widely believed to play an important role in the pathogenesis of Alz heimer's disease(AD),which is also recognized as one of the main biomarkers for AD diagnosis.The peptide sequence Lys-Leu-Val-Phe-Phe(KLVFF) is considered as the main driver of the fibrillation of Aβ,which also can be utilized to target Aβ and inhibit its aggregation.In this study,KLVFF and Fmoc-KLVFF fluorescent nanoparticles were self-assembled through zinc coordination and π-πstacking.The recognition of Aβ aggregates including oligomers and fibrils by fluorescent nanoparticles can be realized through aromatic,hydrophobic,and hydrogen-bond interactions.The fluorescent nanoprobes can distinguish Aβ aggregation formats and detect Aβ at the limit of 1 pg/mL(S/N=3).Hence,the detection of Aβ aggregates by fluorescent peptide nanoparticles has great potential for AD diagnosis and progression prediction.  相似文献   

15.
Hydrolysis of the asymmetric pyridine- and phenol-containing ligand HL (1) (2-hydroxy-4-6-di- tert-butylbenzyl-2-pyridylmethyl)imine) led to the use of bis-(3,5-di -tert-butyl-2-phenolato-benzaldehyde)copper(II), [Cu (II)(L (SAL)) 2] ( 1) as a precursor for bis-(2,4-di- tert-butyl-6-octadecyliminomethyl-phenolato)copper(II), [Cu (II)(L (2)) 2] ( 3), bis-(2,4-di- tert-butyl-6-octadecyl aminomethyl-phenolato)copper(II), [Cu (II)(L (2A)) 2] ( 3'), and bis-(2,4-di- tert-butyl-6-[(3,4,5-tris-dodecyloxy-phenylimino)-methyl]-phenolato)copper(II), [Cu (II)(L (3)) 2] ( 4). These complexes exhibit hydrophilic copper-containing head groups, hydrophobic alkyl and alkoxo tails, and present potential as precursors for redox-responsive Langmuir-Blodgett films. All systems were characterized by means of elemental, spectrometric, spectroscopic, and electrochemical techniques, and their amphiphilic properties were probed by means of compression isotherms and Brewster angle microscopy. Good redox activity was observed for 3 with two phenoxyl radical processes between 0.5 and 0.8 V vs Fc (+)/Fc, but this complex lacks amphiphilic behavior. To attain good balance between redox response and amphiphilicity, increased core flexibility in 3' and incorporation of alkoxy chains in 4 were attempted. Film formation with collapse at 14 mN.m (-1) was observed for the alkoxy-derivative but redox-response was seriously compromised. Core flexibility improved Langmuir film formation with a higher formal collapse and showed excellent cyclability of the ligand-based processes.  相似文献   

16.
《Electroanalysis》2003,15(13):1139-1142
Electrochemical properties of Fc‐PEM films have been studied by changing the chemical structure of the polymer chains and the content of Fc moiety in the film systematically. We have prepared a series of PEM films by a layer‐by‐layer deposition of polycations, Fc‐modified poly(allylamine) (Fc‐PAA) and poly(ethyleneimine) (Fc‐PEI), and polyanionic poly(vinyl sulfate) (PVS) on the surface of a gold electrode. The redox properties of the Fc‐PAA/PVS and Fc‐PEI/PVS films depended significantly on the content of Fc moiety in the polymer chains and on the polymer type. Fc‐ PAA and Fc‐PEI polymer chains can penetrate 3 or 4 PAA/PVS bilayers inserted between the redox polymers and electrode. The Fc‐PAA film‐modified electrode can be used for electrocatalytic oxidation of ascorbic acid.  相似文献   

17.
Supramolecular materials cross‐linked between polymer chains by noncovalent bonds have the potential to provide dynamic functions that are not produced by covalently cross‐linked polymeric materials. We focused on the formation of supramolecular polymeric materials through host–guest interactions: a powerful method for the creation of nonconventional materials. We employed two different kinds of host–guest inclusion complexes of β‐cyclodextrin (βCD) with adamantane (Ad) and ferrocene (Fc) to bind polymers together to form a supramolecular hydrogel (βCD‐Ad‐Fc gel). The βCD‐Ad‐Fc gel showed self‐healing ability when damaged and responded to redox stimuli by expansion or contraction. Moreover, the βCD‐Ad‐Fc gel showed a redox‐responsive shape‐morphing effect. We thus succeeded in deriving three functions from the introduction of two kinds of functional units into a supramolecular material.  相似文献   

18.
Supramolecular materials cross‐linked between polymer chains by noncovalent bonds have the potential to provide dynamic functions that are not produced by covalently cross‐linked polymeric materials. We focused on the formation of supramolecular polymeric materials through host–guest interactions: a powerful method for the creation of nonconventional materials. We employed two different kinds of host–guest inclusion complexes of β‐cyclodextrin (βCD) with adamantane (Ad) and ferrocene (Fc) to bind polymers together to form a supramolecular hydrogel (βCD‐Ad‐Fc gel). The βCD‐Ad‐Fc gel showed self‐healing ability when damaged and responded to redox stimuli by expansion or contraction. Moreover, the βCD‐Ad‐Fc gel showed a redox‐responsive shape‐morphing effect. We thus succeeded in deriving three functions from the introduction of two kinds of functional units into a supramolecular material.  相似文献   

19.
4,4′-二(硬脂酰胺基)-二苯甲烷(BSAPM)在LiClO4/碳酸丙烯酯(PC)中能形成超分子有机凝胶。用循环伏安法研究了包埋在凝胶中的二茂铁的氧化还原行为。结果表明,有机凝胶内的二茂铁仍具有氧化还原活性,其氧化还原行为是受扩散控制的单电子可逆转移过程。与溶液相比,最低化凝胶浓度下凝胶中二茂铁和二茂铁离子的扩散系数分别从5.62×10-6cm2/s和6.47×10-6cm2/s下降为3.32×10-6cm2/s和4.41×10-6cm2/s,且随凝胶因子浓度的增加,凝胶中二茂铁和二茂铁离子的扩散系数降低。  相似文献   

20.
A series of pyridine- and phenol-based ruthenium(II)-containing amphiphiles with bidentate ligands of the following types are reported: [(L(PyI))Ru(II)(bpy)(2)](PF(6))(2) (1), [(L(PyA))Ru(II)(bpy)(2)](PF(6))(2) (2), [(L(PhBuI))Ru(II)(bpy)(2)](PF(6)) (3), and [(L(PhClI))Ru(II)(bpy)(2)](PF(6)) (4). Species 1 and 2 are obtained by treatment of [Ru(bpy)(2)Cl(2)] with the ligands L(PyI) (N-(pyridine-2-ylmethylene)octadecan-1-amine) and L(PyA) (N-(pyridine-2-ylmethyl)octadecan-1-amine). The imine species 3 and 4 are synthesized by reaction of [Ru(bpy)(2)(CF(3)SO(3))(2)] with the amine ligands HL(PhBuA) (2,4-di-tert-butyl-6-((octadecylamino)methyl)phenol), and HL(PhClA) (2,4-dichloro-6-((octadecylamino)methyl)phenol). Compounds 1-4 are characterized by means of electrospray ionization (ESI(+)) mass spectrometry, elemental analyses, as well as electrochemical methods, infrared and UV-visible absorption and emission spectroscopies. The cyclic voltammograms (CVs) of 1-2 are marked by two successive processes around -1.78 and -2.27 V versus Fc(+)/Fc attributed to bipyridine reduction. A further ligand-centered reductive process is seen for 1. The Ru(II)/Ru(III) couple appears at 0.93 V versus Fc(+)/Fc. The phenolato-containing 3 and 4 species present relatively lower reduction potentials and more reversible redox behavior, along with Ru(II/III) and phenolate/phenoxyl oxidations. The interpretation of observed redox behavior is supported by density functional theory (DFT) calculations. Complexes 1-4 are surface-active as characterized by compression isotherms and Brewster angle microscopy. Species 1 and 2 show collapse pressures of about 29-32 mN·m(-1), and are strong candidates for the formation of redox-responsive monolayer films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号