首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The performances of gas chromatography with mass spectrometry and of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution–alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity‐exposed samples. Examination of the results confirmed the outperformance of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in Dmagna samples. The peak areas of multivariate curve resolution–alternating least squares resolved elution profiles in every sample analyzed by comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt‐exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de‐regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation.  相似文献   

2.
A method involving comprehensive two‐dimensional gas chromatography coupled to high‐resolution time‐of‐flight mass spectrometry was developed and applied to the analysis of nitrogenous organic compounds present in mainstream cigarette smoke trapped on self‐designed equipment. The samples were prepared using low‐temperature solvent extraction under liquid nitrogen and analyzed by comprehensive two‐dimensional gas chromatography with high‐resolution time‐of‐flight mass spectrometry. Important experimental parameters, such as the type and volume of the extraction solvent and flow rate of smoking, were optimized to improve the analysis parameter. The results indicated that 180 mL of diethyl ether in the low‐temperature solvent extraction apparatus system with a 4 mL/min smoke flow rate were the optimal conditions. Then, 85 nitrogenous organic compounds were identified and quantified using a mass spectral library search, accurate mass ion and N‐rules of a molecular formula for nitrogen compounds. Finally, a comparison of the low temperature solvent extraction method and Cambridge filter pad method indicated that more peaks, a higher peak volume and better repeatability were obtained using the low‐temperature solvent extraction method.  相似文献   

3.
The present research is based on the use of a recently developed comprehensive two‐dimensional gas chromatography thermal modulator, which is defined as solid‐state modulator. The transfer device was installed on top of a single gas chromatography oven, while benchtop low‐resolution time‐of‐flight mass spectrometry was used to monitor the compounds exiting the second analytical column. The solid‐state modulator was first described by Luong et al. in 2016, and it is a moving modulator that does not require heating and cooling gases to generate comprehensive two‐dimensional gas chromatography data. The accumulation and remobilization steps occur on a trapping capillary, this being subjected to thermoelectric cooling and micathermic heating. In this study, the effects of the gas linear velocity on the modulation performance were evaluated by using two different uncoated trapping capillaries, viz., 0.8 m × 0.25 mm id and 0.8 m × 0.20 mm id. Solid‐state modulator applications were carried out on a standard solution containing n‐alkanes (C9, C10, C12), and on a sample of diesel fuel. The results indicated that the type of trapping capillary and gas velocity have a profound effect on modulation efficiency.  相似文献   

4.
This study was designed to develop a simple, specific and reliable method to overall analyze the chemical constituents in clematidis radix et rhizome/notopterygii rhizome et radix herb couple using high‐performance liquid chromatography coupled with tandem mass spectrometry and multiple chemometric analysis. First, the separation and qualitative analysis of herb couple was achieved on an Agilent Zorbax Eclipse Plus C18 column (250 mm × 4.6 mm, 5 μm), and 69 compounds were unambiguously or tentatively identified. Moreover, in quantitative analysis, eight ingredients including six coumarins and two triterpenoid sapogenins were quantified by high‐performance liquid chromatography coupled with tandem mass spectrometry. In terms of good linearity (r2 ≥ 0.9995) with a relatively wide concentration range, recovery (85.40–102.50%) and repeatability (0.99–4.45%), the validation results suggested the proposed method was reliable, and successfully used to analyze ten batches of herb couple samples. Then, hierarchical cluster analysis and principal component analysis were used to classify samples and search significant ingredients. The results showed that ten batches of herb couple samples were classified into three groups, and six compounds were found for its better quality control.  相似文献   

5.
Although several methods for the analysis of nitrogen compounds in diesel fuel have been described in the literature, the demand for rapid, sensitive, and robust analyses has increased in recent years. In this study, a comprehensive two‐dimensional gas chromatographic method was developed for the identification and quantification of nitrogen compounds in diesel fuel samples. The quantification was performed using the standard addition method and the analysis was conducted using comprehensive two‐dimensional gas chromatography coupled with fast quadrupole mass spectrometry. This study is the first to report quantification of nitrogen compounds in diesel fuel samples using the standard addition method without fractionation. This type of analysis was previously performed using many laborious separation steps, which can lead to errors and losses. The proposed method shows good linearity for target nitrogen compounds evaluated (m‐toluidine, 4‐ethylaniline, indole, 7‐methylindole, 7‐ethylindole, carbazole, isoquinoline, 4‐methylquinoline, benzo[h]quinolone, and acridine) over a range from 0.05 to 2.0 mg/L, and limits of detection and quantification of <0.06 and 0.16 mg/L, respectively, for all nitrogen compounds studied.  相似文献   

6.
An analytical method was developed for the quantitation of the mineral oil aromatic hydrocarbons in cosmetic raw materials separating those of one or two aromatic rings from those of three and more aromatic rings. Normal phase high performance liquid chromatography was used with donor‐acceptor complex chromatography. The composition of both fractions and the quantities of respective compounds were determined by comprehensive two dimensional gas chromatography with time of flight mass spectrometry and by liquid chromatography coupled to gas chromatography with flame ionization detection.  相似文献   

7.
A wide variety of biomass, from triglycerides to lignocellulosic‐based feedstock, are among promising candidates to possibly fulfill requirements as a substitute for crude oils as primary sources of chemical energy feedstock. During the feedstock processing carried out to increase the H:C ratio of the products, heteroatom‐containing compounds can promote corrosion, thus limiting and/or deactivating catalytic processes needed to transform the biomass into fuel. The use of advanced gas chromatography techniques, in particular multi‐dimensional gas chromatography, both heart‐cutting and comprehensive coupled to mass spectrometry, has been widely exploited in the field of petroleomics over the past 30 years and has also been successfully applied to the characterization of volatile and semi‐volatile compounds during the processing of biomass feedstock. This review intends to describe advanced gas chromatography–mass spectrometry‐based techniques, mainly focusing in the period 2011–early 2020. Particular emphasis has been devoted to the multi‐dimensional gas chromatography–mass spectrometry techniques, for the isolation and characterization of the oxygen‐containing compounds in biomass feedstock. Within this context, the most recent advances to sample preparation, derivatization, as well as gas chromatography instrumentation, mass spectrometry ionization, identification, and data handling in the biomass industry, are described.  相似文献   

8.
Scientific evidence has shown an association between organochlorine compounds (OCC) exposure and human health hazards. Concerning this, OCC detection in human adipose samples has to be considered a public health priority. This study evaluated the efficacy of various solid‐phase extraction (SPE) and cleanup methods for OCC determination in human adipose tissue. Octadecylsilyl endcapped (C18‐E), benzenesulfonic acid modified silica cation exchanger (SA), poly(styrene‐divinylbenzene (EN) and EN/RP18 SPE sorbents were evaluated. The relative sample cleanup provided by these SPE columns was evaluated using gas chromatography with electron capture detection (GC–ECD). The C18‐E columns with strong homogenization were found to provide the most effective cleanup, removing the greatest amount of interfering substance, and simultaneously ensuring good analyte recoveries higher than 70%. Recoveries > 70% with standard deviations (SD) < 15% were obtained for all compounds under the selected conditions. Method detection limits were in the 0.003–0.009 mg/kg range. The positive samples were confirmed by gas chromatography coupled with tandem mass spectrometry (GC‐MS/MS). The highest percentage found of the OCC in real samples corresponded to HCB, o,p′‐DDT and methoxychlor, which were detected in 80 and 95% of samples analyzed respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A novel heart‐cutting two‐dimensional liquid chromatography coupled with tandem mass spectrometry method was developed for quantitative analysis of pendimethalin residue in tobacco. The strategy of reversed phase liquid chromatography coupled with another reversed‐phase liquid chromatography was employed for high column efficiency and excellent compatibility of mobile phase. In the first dimensional chromatography, a cyano column with methanol/water as the eluent was applied to separate pendimethalin from thousands of interference components in tobacco. By heart‐cutting technique, which effectively removed interference components, the target compound was cut to the second dimensional C18 column for further separation. The pendimethalin residue was finally determined by the tandem mass spectrometry under multiple reaction monitoring reversed‐phase liquid chromatography mode. Sample pretreatment of the new method was simplified, involving only extraction and filtration. Compared with traditional methodologies, the new method showed fairly high selectivity and sensitivity with almost no matrix interference. The limit of quantitation for pendimethalin was 1.21 ng/mL, whereas the overall recoveries ranged from 95.7 to 103.3%. The new method has been successfully applied to non‐stop measure of 200 real samples, without contamination of ion source. Detection results of the samples agreed well with standard method.  相似文献   

10.
An orthogonal two‐dimensional solid‐phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed‐phase liquid chromatography material (C18) and a weak cation‐exchange material (TGA) were integrated in a single solid‐phase extraction cartridge. The feasibility of two‐dimensional clean‐up procedure that experienced two‐step adsorption, two‐step rinsing, and two‐step elution was systematically investigated. Based on the orthogonality of reversed‐phase and weak cation‐exchange procedures, the two‐dimensional solid‐phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed‐phase solid‐phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation‐exchange solid‐phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two‐dimensional clean‐up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk.  相似文献   

11.
In this paper, a facile extraction strategy is reported for the analysis of isopentenyl pyrophosphate, a key isoprenoid, based on magnetic core–shell microspheres with Ti4+ ion exterior walls coupled with liquid chromatography and tandem mass spectrometry. Because of their excellent hydrophilicity and biological compatibility, the polydopamine@Fe3O4‐Ti4+ microspheres display ideal isopentenyl pyrophosphate extraction efficiency. The technique includes three steps: sample loading, nonphosphate washing, and phosphate elution. Moreover, the microspheres can be regenerated by thorough washing with a specific solvent and can be reused multiple times. The liquid chromatography with tandem mass spectrometry separation was performed on a Welch Ultimate® XB‐C18 column with a total chromatographic analysis time of 5 min; the analytical recovery was 98.52%. The proposed method was used to determine the isopentenyl pyrophosphate concentration in rat plasma samples collected from the Shanghai Chest Hospital. The results indicate the prospective value of the as‐made microspheres for the sensitive and selective enrichment of phosphate compounds in complicated matrices.  相似文献   

12.
Online comprehensive two‐dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two‐dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two‐dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high‐molecular‐weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one‐dimensional liquid chromatography, two‐dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two‐dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two‐dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two‐dimensional liquid chromatography separations.  相似文献   

13.
Humulus lupulus L. (hop) is highly interesting from a nutraceutical perspective. The hop phytocomplex contains a wide range of bioactive metabolites, and its characterization is challenging. To tackle such a task, for the first time we applied and compared a combined approach consisting of online comprehensive two‐dimensional liquid chromatography with tandem mass spectrometry and direct infusion Fourier transform ion cyclotron mass spectrometry. A reversed phase × reversed phase approach with a shifted gradient in the second dimension ensured selectivity and two‐dimensional space coverage. Hyphenation with an ion trap time‐of‐flight analyzer led to the identification of 83 compounds in 70 min, comprising a novel quercetin derivative and six unknown bitter acids. On the other hand, the direct infusion method was able to identify 40 analytes (except isomers) with high mass accuracy (≤ 0.1 ppm) in less than 1 min analysis time. The developed approach can be used in a complementary way, combining the separation capability and high informative spectra of two‐dimensional liquid chromatography tandem mass spectrometry with the ultra‐high mass accuracy of direct infusion, for potential compound discovery or the accurate profiling of bioactive compounds in different hop cultivars as well as for monitoring processing and storage of hop‐based products.  相似文献   

14.
ShenKang injection is traditional Chinese medicine used to treat chronic renal failure in China. It is a compound preparation that consists of four herbs: Rhubarb, Salvia miltiorrhiza, Safflower and Radix Astragali . We developed an ultra high pressure liquid chromatography coupled with Q Exactive hybrid quadrupole‐orbitrap high resolution accurate mass spectrometry tandem mass spectrometry method to analyze its chemical compositions, and a total of 90 compounds were identified from ShenKang injection. Among them, 19 major compounds were unambiguously detected by comparing with reference standards. Meanwhile, 13 representative compounds selected as quality control markers were simultaneously quantified in ShenKang injection samples. Chromatographic separation was accomplished on a Waters ACQUITY HPLC® HSS C18 column using gradient elution. The method was validated with respect to linearity, sensitivity, accuracy and precision, reproducibility and stability. And the validated method was successfully applied for simultaneous determination of 13 bioactive compounds in ShenKang injection from ten batches of samples by liquid chromatography with mass spectrometry. The results were analyzed by principal components analysis method, and three compounds had a significant relationship with the quality control of ShenKang injection. This research established a rapid and reliable method for the integrating quality control, including qualitation and quantification of ShenKang injection.  相似文献   

15.
In this work, a sensitive and efficient method was established and validated for qualitative and quantitative analysis of major bioactive constituents in Dazhu Hongjingtian capsule by liquid chromatography tandem mass spectrometry. A total of 32 compounds were tentatively identified using ultra‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. Furthermore, 12 constituents, namely gallic acid, 3,4‐dihydroxybenzoic acid, salidroside, p‐ coumaric acid‐4‐O β ‐d ‐glucopyranoside, bergeninum, 4‐hydroxybenzoic acid, 4‐hydroxyphenylacetic acid, syringate, 6′′‐O ‐galloylsalidroside, rhodiosin, rhodionin and kaempferol‐7‐O α ‐l ‐rhamnoside, were simultaneously quantified by the developed ultra‐performance liquid chromatography coupled with a triple quadrupole mass spectrometry method in 9 min. All of them were analyzed on an Agilent ZorBax SB‐C18 column (3.0 × 100 mm, 1.8 μm) with linear gradient elution of methanol–0.1% formic acid water. The proposed method was applied to analyze three batches of samples with acceptable linearity (R , 0.9979–0.9997), precision (RSD, 1.3–4.7%), repeatability (RSD, 1.7–4.9%), stability (RSD, 2.2–4.9%) and recovery (RSD, 0.6–4.4%) of the 12 compounds. As a result, the analytical method possessing high throughput and sensitivity is suitable for the quality control of Dazhu Hongjingtian capsule.  相似文献   

16.
Gas chromatography coupled to high‐resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high‐resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi‐volatile organic compounds. Gas chromatography with high‐resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high‐resolution time‐of‐flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi‐target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high‐resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high‐resolution mass spectrometry for non‐target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high‐resolution mass spectrometry over the currently used methods is expected, will be discussed as well.  相似文献   

17.
An efficient enantioselective method for the simultaneous determination of isocarbophos and its main metabolite isocarbophos oxon in rice, soil, and water was developed using liquid chromatography with tandem mass spectrometry. The enantioseparation was performed on a Chiralpak AD‐3R column at 30°C using gradient elution. Target compounds were extracted from soil and rice using acetonitrile with omission of a clean‐up procedure, while a C18 solid‐phase extraction column was used for water samples. Quantification was achieved using matrix‐matched calibration. The overall mean recoveries for isocarbophos and isocarbophos oxon enantiomers from the five matrices were 89.7–103 and 90.1–98.7%, with relative standard deviations of 2.1–5.4 and 2.5–4.7%, respectively. Moreover, the absolute configurations of isocarbophos oxon enantiomers were determined by liquid chromatography with tandem mass spectrometry through incubation of each isocarbophos enantiomer in soil, the first eluting enantiomer being confirmed as (R)‐(?)‐isocarbophos oxon. The proposed method was applied to real soil samples and satisfactory results were obtained.  相似文献   

18.
An integrated strategy of characteristic fragment filtering combined with target database screening based on ultra‐high‐performance liquid chromatography coupled with high‐resolution mass spectrometry was proposed for comprehensive profiling of components in Schisandrae chinensis Fructus. The strategy consisted of following five steps: (1) Representative standards were analyzed by ultra high performance liquid chromatography coupled with linear ion trap‐Orbitrap mass spectrometer for characteristic fragments and fragmentation rules of each structure type. (2) The raw data of 70% methanol extract was collected by ultra high performance liquid chromatography quadrupole time‐of‐flight tandem mass spectrometry. (3) The chemical components database that consisted of names, chemical formulas and structures of potential components in Schisandrae chinensis Fructus was established by summarizing previous literature to screen the collected liquid chromatography with mass spectrometry data and obtain matched compounds. (4) Characteristic fragments, literature, and reference standards were used to verify the matches. (5) Characteristic fragment filtering combined with online database querying was used to deduce potential new compounds. As a result, a total of 94 compounds were identified or characterized and 16 of them were potential new compounds. The study provided a reference for comprehensive characterization of ingredients in herbal medicine and formed the foundation for pharmacodynamic study of Schisandrae chinensis Fructus.  相似文献   

19.
A recent guideline recommends therapeutic drug monitoring for risperidone, paliperidone and olanzapine, which are frequently used second‐generation antipsychotics. We developed a simple high‐performance liquid chromatography–tandem mass spectrometry coupled with an online solid‐phase extraction method that can be used to measure risperidone, paliperidone and olanzapine using small (40 μL) samples. The analytes were extracted from serum samples automatically pre‐concentrated and purified by C8 (5 μm, 2.1 × 30 mm) solid‐phase extraction cartridges, then chromatographed on an Xbidge™ C18 column (3.5 μm, 100 × 2.1 mm) thermostatted at 30°C with a mobile phase consisting of 70% acetonitrile and 30% ammonium hydroxide 1% solution at an isocratic flow rate of 0.3 mL/min, and detected with tandem mass spectrometry. The assay was validated in the concentration range from 2.5 to 160 ng/mL. Intra‐ and inter‐day precision for all analytes was between 1.1 and 8.2%; method accuracy was between 6.6 and 7.6%. The risperidone and paliperidone assay was compared with a high‐performance liquid chromatography‐ultraviolet assay currently used in our hospital for risperidone and paliperidone therapeutic drug monitoring, and the results of weighted Deming regression analysis showed good agreement. For the olanzapine assay, we compared 20 samples in separate re‐assays on different days; all the relative errors were within the 20% recommended limit.  相似文献   

20.
Sulfur‐fumigation could alter the quality of white ginseng by damaging the bioactive compounds and generating sulfur‐containing materials. In the present study, coupling needle‐trap devices with comprehensive two‐dimensional gas chromatography and high‐resolution time‐of‐flight mass spectrometry was applied to rapidly reveal chemical transformation of volatile components from sulfur‐fumigated ginseng. Thirty‐two volatile compounds were not in white ginseng samples after sulfur‐fumigation. Furthermore, 20 sulfur‐containing compounds were identified for the first time in volatile oil of sulfur‐fumigated white ginseng. The established approach could be applied to discriminate sulfur‐fumigated white ginseng among commercial samples and to control the quality of white ginseng.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号