首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.  相似文献   

2.
Zinc oxide (ZnO) surfaces with controllable structures (i.e, microstructure, nanostructure, and micronanobinary structure) have been created by controlling pH at < 4 or > 10.5 in the Zn(gray) + H2O2 reaction. The resulting surface shows superhydrophobicity. It is found that the water contact angle (CA) of the surface with micronanobinary structure is greater than that of nanostructure and that of nanostructure is greater than that of the microstructure. Theoretical analysis is completely in agreement with the experimental results.  相似文献   

3.
The present work investigates the enhancement of water repellency on engineering materials surfaces using nanoscale roughness inherent in multi-walled carbon nanotubes (MWCNTs) together with a hydrophobic polystyrene coating via a simple spraying-based technique. The coatings show both a high contact angle and a small sliding angle for water droplets. The different surfaces obtained exhibit contact angles from 125° up to 153° depending on the preparation conditions. The observations of the topology by scanning electron microscopy reveal that the nanostructure created by the MWCNTs and the microstructure induced by the deposition of polystyrene particles forming a two-level structure that conceptually mimics the lotus leaf surface are necessary to create stable superhydrophobic surfaces.  相似文献   

4.
Reversible control of free energy and topography of nanostructured surfaces   总被引:1,自引:0,他引:1  
We describe a facile method for the formation of dynamic nanostructured surfaces based on the modification of porous anodic aluminum oxide with poly(N-isopropyl acrylamide) (PNIPAAm) via surface-initiated atom transfer radical polymerization. The dynamic structure of these surfaces was investigated by atomic force microscopy (AFM), which showed dramatic changes in the surface nanostructure above and below the aqueous lower critical solution temperature of PNIPAAm. These changes in surface structure are correlated with changes in the macroscopic wettability of the surfaces, which was probed by water contact angle measurements. Principal component analysis was used to develop a quantitative correlation between AFM image intensity histograms and macroscopic wettability. Such correlations and dynamic nanostructured surfaces may have a variety of uses.  相似文献   

5.
Superhydrophobic bionic surfaces with hierarchical micro/nano structures were synthesized by decorating single-walled or multiwalled carbon nanotubes (CNTs) on monolayer polystyrene colloidal crystals using a wet chemical self-assembly technique and subsequent surface treatment with a low surface-energy material of fluoroalkylsilane. The bionic surfaces are based on the regularly ordered colloidal crystals, and thus the surfaces have a uniform superhydrophobic property on the whole surface. Moreover, the wettability of the bionic surface can be well controlled by changing the distribution density of CNTs or the size of polystyrene microspheres. The morphologies of the synthesized bionic surfaces bear much resemblance to natural lotus leaves, and the wettability exhibited remarkable superhydrophobicity with a water contact angle of about 165 degrees and a sliding angle of 5 degrees.  相似文献   

6.
A simple method for fabricating micro/nanoscale hierarchical structures is presented using a two-step temperature-directed capillary molding technique. This lithographic method involves a sequential application of the molding process in which a uniform polymer-coated surface is molded with a patterned mold by means of capillary force above the glass transition temperature of the polymer. Various microstructures and nanostructures were fabricated with minimum resolution down to approximately 50 nm with good reproducibility. Also contact angle measurements of water indicated that two wetting states coexist on a multiscale hierarchical structure where heterogeneous wetting is dominant for the microstructure and homogeneous wetting for the nanostructure. A simple theoretical model combining these two wetting states was presented, which was in good agreement with the experimental data. Using this approach, multiscale hierarchical structures for biomimetic functional surfaces can be fabricated with precise control over geometrical parameters and the wettability of a solid surface can be tailored in a controllable manner.  相似文献   

7.
The present work reports a simple and economic route for production and characterization of stable superhydrophobic surfaces from thin copper layers coated on arbitrary solid substrates. The thin copper layer was anodized in a 2 M aqueous solution of potassium hydroxide to form a thin film of copper hydroxide nanoneedles; then the film was reacted with n-dodecanethiol to form a thermally stable Cu(SC12H25)2 superhydrophobic coating. The contact angle of the modified nanoneedle surface was higher than 150 degrees , and its tilt angle was smaller than 2 degrees . Furthermore, the surface fabricated on copper foil kept its superhydrophobic property after heating at 160 degrees C in air for over 42 h. This technique has also been applied for fabrication of copper wire with superhydrophobic submicrofiber coating to mimic water strider legs. The maximal supporting force of the superhydrophobic copper column has also been investigated in comparison to real water striders.  相似文献   

8.
Efficient removal of particles from topologically‐complex surfaces is of significant import for a range of applications (e.g., explosive residue removal in security arenas). Here, we synthesize next‐generation polymeric particle removal swabs with tuned structural features to elucidate the influence of the polymer microstructure on the removal of trace particles from surfaces. Specifically, microstructured free‐standing films of the conducting polymer polypyrrole (PPy) were synthesized through template‐assisted electropolymerization techniques. The removal of polystyrene microspheres from representative aluminum surfaces of varying roughness was evaluated as a function of the PPy microstructure. PPy‐based microstructured swabs displayed increased particle trapping properties relative to non‐textured PPy‐based swabs and current commercial swabs. This increased effectiveness occurred from the more intimate particle‐swab contact, leading to increased van der Waals interactions for the microstructured swabs. Therefore, this effort provides critical design rules for the production of microstructured conducting polymer materials for their application toward advanced particle removal technologies. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1968–1974  相似文献   

9.
The fabrication of a superhydrophobic surface is demonstrated via a wet chemical route, and this method offers advantages of being cleanroom free, cost efficiency, and wide applicability. The preferable growth of ZnO crystalline forms a microstructured surface, and a variety of alkanoic acids were adopted to tune the surface wettability. Although all surfaces show an advancing contact angle greater than 150 degrees , they substantially differ in the wetting mechanisms. It is found that only when the length of alkanoic acid is greater than 16, the microstructured surface shows a stable superhydrophobicity, in which the Cassie state dominates. While for those moderate-length alkanoic acids (C8-C14), their corresponding surfaces have a tendency to fall into the Wenzel state and display a great contact angle hysteresis.  相似文献   

10.
Microstructured polymer surfaces, including conducting and insulating polymers, have been prepared to achieve electrochemical control of the surface energy and topography. The reported surface switches include pillar- and mesh-like surface patterns of polypyrrole (PPy), poly(3,4-ethylene-dioxythiophene) (PEDOT), and photoresists. The structures have been evaluated by contact angle measurements and optical and scanning electron microscopy to determine the surfaces characteristics. These microstructured polymer surface switches can be electrochemically modified from dewetting to wetting conditions, with a maximum associated change of the water contact angle from 129 degrees to 44 degrees . This contact angle switching was observed for samples in which dynamic control of the surface topography and surface tension was coupled. Control of topography was achieved with a dynamic height-switching range of more than 3 mum. In addition, dynamic control of anisotropic wetting is reported. Our experiments were carried out under conditions that are suitable for a biointerface, implying potential application in biotechnology and cell science. In particular, switching of the energy, chemistry, and topography of the surface, along with their associated orientation, are interesting features for dynamic (electronic) control of the seeding and proliferation for living cells. The technology reported promises for electronically controlled cell-growth within Petri dishes, well plates, and other cell-hosting tools.  相似文献   

11.
Superhydrophobic cerium oxide film was introduced to aluminum substrate by an in‐situ growth process and surface modification. Different molar ratios between Ce(NO3)3 · 6H2O and C6H12N4 were involved in this research. The morphologies, chemical compositions and wetting properties of the films were analyzed by scanning electron microscopy (SEM), energy dispersive X‐ray detector, Fourier transfer infrared spectrometer and water contact angle (WCA) measurement, respectively. A great WCA of 158.8o with a low angle hysteresis of about 3o was obtained. Combination of uniform hierarchical micro‐nanostructure as revealed by SEM together with the hydrophobic alkyl groups from stearic acid was found to be responsible for the superior superhydrophobic property. The corrosion resistance performance of the superhydrophobic surface was evaluated by immersing in sodium chloride aqueous solution, the WCA kept as high as 152.1o after immersion for 21 days, indicating our superhydrophobic surfaces had high chemical stability and durability in corrosive medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Cassie-Baxter theory has traditionally been used to study liquid drops in contact with microstructured surfaces. The Cassie-Baxter theory arises from a minimization of the global Gibbs free energy of the system but does not account for the topology of the three-phase contact line. We experimentally compare two situations differing only in the microstructure of the roughness, which causes differences in contact line topology. We report that the contact angle is independent of area void fraction for surfaces with microcavities, which correspond to situations when the advancing contact line is continuous. This result is in contrast with Cassie-Baxter theory, which uses area void fraction as the determining parameter, regardless of the type of roughness.  相似文献   

13.
Contact angle measurements are of great importance in surface characterization but the practical use has often been limited to macroscopic dimensions (millimeters). Therefore, we have developed a confocal microscopy method that allows non-destructive measurements of both low (<30 degrees ) and high (30 degrees -90 degrees ) contact angles. Low contact angles were measured by reconstructing the drop profile from the interference patterns in droplets condensed from atmospheric humidity. At higher contact angles water droplets with a small amount of fluorescein were sprayed onto the surfaces and 3D-image stacks were recorded and used to extract the contact angle. Suitable drop sizes were between a few up to about 50 mum radius, using a 40x magnification objective. Using drops >10 micrometers radius for microcontact angle measurements a good correlation was obtained between measured micro- and macrocontact angles. After microcontact angle measurements the surfaces were rinsed and heavy meromyosin motor fragments were adsorbed to the surface. Importantly, the sensitive actin propelling function of these motor proteins was not affected by the previous contact angle measurements using fluorescent droplets. This suggests that the methodology should be suitable for non-destructive characterization of different parts of micropatterned surfaces being developed for biological assays.  相似文献   

14.
铝合金表面原位自组装超疏水膜层的制备及耐蚀性能   总被引:3,自引:0,他引:3  
采用阳极氧化法在铝合金表面原位构造粗糙结构, 经表面自组装硅氧烷后得到超疏水自清洁表面, 与水滴的接触角最大可达157.5°±2.0°, 接触角滞后小于3°. 通过傅立叶变换红外(FT-IR)光谱分析仪、场发射扫描电子显微镜(FE-SEM)、能谱仪(EDS)、原子力显微镜(AFM)和接触角测试对阳极氧化电流密度、硅氧烷溶液中水的含量和自组装时间等参数进行了分析, 并得到制备超疏水自清洁表面的最优工艺参数. FE-SEM及AFM的测试结果表明, 由自组装硅氧烷膜层的无序性形成的纳米结构和阳极氧化构造的微米级粗糙结构与硅氧烷膜层的低表面能的协同作用构成了稳定的超疏水表面. 电化学测试(动电位极化)的结果表明, 原位自组装超疏水膜层极大地提高了铝合金的耐蚀性.  相似文献   

15.
A facial chemical etching method was developed for fabricating superhydrophobic aluminum surfaces. The resultant surfaces were characterized by scanning electron microscopy, water contact angle (WCA) measurement, and optical methods. The surfaces of the modified aluminum substrates exhibit superhydrophobicity, with a WCA of 154.8° ± 1.6° and a water sliding angle of about 5°. The etched surfaces have binary structure consisting of the irregular microscale plateaus and caves in which there are the nanoscale block‐like convexes and hollows. The superhydrophobicity of aluminum substrates occurs only in some structures in which the plateaus and caves are appropriately ordered. The resulted surfaces have good self‐cleaning properties. The results demonstrate that it is possible to construct superhydrophobic surface on hydrophilic substrates by tailoring the surface structure to providing more spaces to trap air. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The amazing water repellency of many biological surfaces, exemplified by lotus leaves, has recently received a great deal of interest. These surfaces, called superhydrophobic surfaces, exhibit water contact angles larger than 150 degrees and a low contact angle hysteresis because of both their low surface energy and heterogeneously rough structures. In this paper, we suggest a biomimetic method, "biosilicification", for generating heterogeneously rough structures and fabricating superhydrophobic surfaces. The superhydrophobic surface was prepared by a combination of the formation of heterogeneously rough, nanosphere-like silica structures through biosilicification and the formation of self-assembled monolayers of fluorosilane on the surface. The resulting surface exhibited the water contact angle of 160.1 degrees and the very low water contact angle hysteresis of only 2.3 degrees, which are definite characteristics of superhydrophobic surfaces. The superhydrophobic property of our system probably resulted from the air trapped in the rough surface. The wetting behavior on the surface was in the heterogeneous regime, which was totally supported by Cassie-Baxter equation.  相似文献   

17.
Mechanically responsive surfaces that allow to switch reversibly from a hydrophobic to a hydrophilic substrate are reported. The surfaces are constituted of polyelectrolyte multilayers deposited on modified charged silicone sheets. n bilayers of poly(allylamine)-Nafion (PAH-Naf) and m bilayers of poly(allylamine)-poly(acrylic acid) (PAH-PAA) composed the multilayers. A (PAH-Naf)(n) film possesses a water contact angle of around 105 degrees, whereas the contact angle of a (PAH-Naf)(4)-(PAH-PAA)(m) multilayer is around 50 degrees. When such a film with m < 5 and terminated by PAA is stretched out, its water contact angle increases up to around 100 degrees. Successive elongation/retraction cycles allow the water contact angle to alternate reversibly between 100 and 57 degrees indicating the reversible mechanical responsive nature of the film.  相似文献   

18.
We present a simple method for fabricating superhydrophobic silicon surfaces. The method consists of irradiating silicon wafers with femtosecond laser pulses and then coating the surfaces with a layer of fluoroalkylsilane molecules. The laser irradiation creates a surface morphology that exhibits structure on the micro- and nanoscale. By varying the laser fluence, we can tune the surface morphology and the wetting properties. We measured the static and dynamic contact angles for water and hexadecane on these surfaces. For water, the microstructured silicon surfaces yield contact angles higher than 160 degrees and negligible hysteresis. For hexadecane, the microstructuring leads to a transition from nonwetting to wetting.  相似文献   

19.
The wetting of amorphous poly(dimethylsiloxane) (PDMS) surfaces by water has been studied using molecular dynamics simulations. PDMS surfaces were generated by compressing a long PDMS chain between two elastic boundaries at atmospheric pressure. Oxidation of the PDMS surface, achieved in real systems by exposure to air plasma or corona discharge, was modeled by replacing methyl groups on the PDMS chain with hydroxyl groups. Three surfaces of varying degrees of oxidation were characterized by measuring the water contact angle and the roughness. The dependence of the microscopic contact angle on drop size was measured from time averaged density profiles. The macroscopic contact angle was measured directly using a cylindrical drop of infinite length with zero contact line curvature. The measured macroscopic contact angle ranged from approximately 125 degrees on the untreated surface to 75 degrees on the most oxidized surface studied. The line tension was found to increase with increasing degree of oxidation, from a negligible value on the untreated surface to approximately 5x10(-11) J m(-1) on the most heavily oxidized surface.  相似文献   

20.
When the superamphiphobic meshes are immersed in water, the rough structures on steel wires are filled with air. The nanostructured superamphiphobic surfaces were prepared on the stainless-steel mesh. By adjusting the mesh size of the surface, the continuity of trapped air layer on the superamphiphobic surface underwater could be controlled. Then the underwater oil-wetting behavior on the prepared superamphiphobic mesh was investigated. The oil droplet spread out on the superamphiphobic surface without mesh and exhibited an oil contact angle of about 0° under water. But the oil contact angle formed on the superamphiphobic mesh surfaces and extended with increasing mesh size. We thought the discontinuity of trapped air layer on the surface and the entry of water into interval between the steel wires should be responsible for these behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号