首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Laminar separation bubbles develop over many blades and airfoils at moderate angles of attack and Reynolds numbers ranging from 104 to 105. More accurate simulation tools are necessary to enable higher fidelity design optimisation for these airfoils and blades as well as to test flow control schemes. Following previous investigators, an equivalent problem is formulated by imposing suitable boundary conditions for flow over a flat plate which allows to use a high accuracy spectral solver. Large eddy simulation (LES) of such a flow were performed at drastically reduced resolution to assess the accuracy of several LES modelling approaches: the explicit dynamic Smagorinsky model, implicit LES, and the truncated Navier–Stokes approach (TNS). To mimic dissipation that occurs in implicit LES, the solution on a coarse mesh is filtered at every time step and two different filter strengths are used. In the TNS approach, the solution is filtered periodically, every few hundred time steps. The performance of each approach is evaluated against benchmark direct numerical simulation (DNS) data focusing on pressure and skin friction distributions, which are critical to airfoil designers. TNS results confirm that periodic filtering can act as an apt substitute for explicit subgrid-scale models, whereas filtering at every time step demonstrates the dependence of implicit LES on details of numerics.  相似文献   

2.
Three-dimensional large-eddy simulations (LES) of the convective boundary layer over a domain of approximately 6 km are performed with the UCLA LES model. Simulations are forced with a constant surface heat flux and prescribed subsidence, and are run to equilibrium. Sub-grid scale fluxes are parameterised with the Smagorinsky–Lilly scheme. A range of grid spacings from 40 down to 5 m are employed. Kinetic energy spectra and the various terms in the kinetic energy spectral budget – heat flux, nonlinear transfer, pressure, and dissipation – are computed using two-dimensional discrete Fourier transforms at every vertical level. Despite the fact that isotropic grid spacings of down to 5 m (grid sizes of 11522×400) were used, an inertial range with a ?5/3 spectrum is not obtained. Rather, shallower energy spectral slopes that are closer to ?4/3 are found. The shallower spectra are shown to possibly result from the injection of kinetic energy over a wide range of scales via a very broad heat flux spectrum. Only with the highest resolution (Δx = 5 m) does the total heat flux begin to converge and the possibility of local isotropy emerge at small scales. Dependence on surface heat flux and domain size is considered. Preliminary sub-grid scale sensitivity results are obtained through comparison with the turbulent kinetic energy sub-grid scale model.  相似文献   

3.
Large-eddy simulation of evaporating spray in a coaxial combustor   总被引:1,自引:0,他引:1  
Large-eddy simulation of an evaporating isopropyl alcohol spray in a coaxial combustor is performed. The Favre-averaged, variable density, low-Mach number Navier-Stokes equations are solved on unstructured grids with dynamic subgrid scale model to compute the turbulent gas-phase. The original incompressible flow algorithm for LES on unstructured grids by [Mahesh et al., J. Comp. Phys. 197 (2004) 215–240] is extended to include density variations and droplet evaporation. An efficient particle-tracking scheme on unstructured meshes is developed to compute the dispersed phase. Experimentally measured droplet size distribution and size-velocity correlation near the nozzle exit are used as the inlet conditions for the spray. The predictive capability of the LES approach on unstructured grids together with Lagrangian droplet dynamics models to capture the droplet dispersion characteristics, size distributions, and the spray evolution is examined in detail. The mean and turbulent quantities for the gas and particle phases are compared to experimental data to show good agreement. It is shown that for low evaporation rates considered in the present study, a well resolved large-eddy simulation together with simple subgrid models for droplet evaporation and motion provides good agreement of the mean and turbulent quantities for the gas and droplet phases compared to the experimental data. This work represents an important first step to assess the predictive capability of the unstructured grid LES approach applied to spray vaporization. The novelty of the results presented is that they establish a baseline fidelity in the ability to simulate complex flows on unstructured grids at conditions representative of gas-turbine combustors.  相似文献   

4.
A general class of explicit and implicit dynamic finite difference schemes for large-eddy simulation is constructed, by combining Taylor series expansions on two different grid resolutions. After calibration for Re→, the dynamic finite difference schemes allow to minimize the dispersion errors during the calculation through the real-time adaption of a dynamic coefficient. In case of DNS resolution, these dynamic schemes reduce to Taylor-based finite difference schemes with formal asymptotic order of accuracy, whereas for LES resolution, the schemes adapt to Dispersion-Relation Preserving schemes. Both the explicit and implicit dynamic finite difference schemes are tested for the large-eddy simulation of the Taylor–Green vortex flow and numerical errors are investigated as well as their interaction with the dynamic Smagorinsky model and the multiscale Smagorinsky model. Very good results are obtained.  相似文献   

5.
An adaptive implicit–explicit scheme for Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES) of compressible turbulent flows on unstructured grids is developed. The method uses a node-based finite-volume discretization with Summation-by-Parts (SBP) property, which, in conjunction with Simultaneous Approximation Terms (SAT) for imposing boundary conditions, leads to a linearly stable semi-discrete scheme. The solution is marched in time using an Implicit–Explicit Runge–Kutta (IMEX-RK) time-advancement scheme. A novel adaptive algorithm for splitting the system into implicit and explicit sets is developed. The method is validated using several canonical laminar and turbulent flows. Load balance for the new scheme is achieved by a dual-constraint, domain decomposition algorithm. The scalability and computational efficiency of the method is investigated, and memory savings compared with a fully implicit method is demonstrated. A notable reduction of computational costs compared to both fully implicit and fully explicit schemes is observed.  相似文献   

6.
Classical large-eddy simulation (LES) modelling assumes that the passive subgrid-scale (SGS) models do not influence large-scale quantities, even though there is now ample evidence of this in many flows. In this work, direct numerical simulation (DNS) and large-eddy simulations of turbulent planar jets at Reynolds number ReH = 6000 including a passive scalar with Schmidt number Sc = 0.7 are used to study the effect of several SGS models on the flow integral quantities e.g. velocity and scalar jet spreading rates. The models analysed are theSmagorinsky, dynamic Smagorinsky, shear-improved Smagorinsky and the Vreman. Detailed analysis of the thin layer bounding the turbulent and non-turbulent regions – the so-called turbulent/non-turbulent interface (TNTI) – shows that this region raises new challenges for classical SGS models. The small scales are far from equilibrium and contain a high fraction of the total kinetic energy and scalar variance, but the situation is worse for the scalar than for the velocity field. Both a-priori and a-posteriori (LES) tests show that the dynamic Smagorinsky and shear-improved models give the best results because they are able to accurately capture the correct statistics of the velocity and passive scalar fluctuations near the TNTI. The results also suggest the existence of a critical resolution Δx, of the order of the Taylor scale λ, which is needed for the scalar field. Coarser passive scalar LES i.e. Δx ≥ λ results in dramatic changes in the integral quantities. This fact is explained by the dynamics of the small scales near the jet interface.  相似文献   

7.
Diesel spray and combustion in a constant-volume engine cylinder was simulated by a large eddy simulation (LES) approach coupling with a multicomponent vapourisation (MCV) modelling. The simulation focused on the inclusion of the interaction between fuel spray and gas-phase turbulence flow at the sub-grid scale. The LES was based on the dynamic structure sub-grid model, and an additional source term was added to the filtered momentum equation to account for the effect of drop motion on the gas-phase turbulence. The multicomponent drop vapourisation modelling was based on the continuous thermodynamics approach using a gamma distribution to describe the complex diesel fuel composition and was capable of predicting a more complex drop vapourisation process. The effect of gas-phase turbulence flow on the fuel drop vapourisation process was evaluated through the solution of the gas-phase moments of the distribution in the present LES framework. A non-evaporative spray in a constant-volume engine cylinder was first simulated to examine the behaviours of LES, in comparison with a Reynolds-averaged Navier–Stokes (RANS) simulation based on the RNG k? model. More realistic diesel spray structures and improved agreement on liquid penetration length with the corresponding experimental data were predicted by the LES, using a grid resolution close to that of RANS. A more comprehensive simulation of diesel spray and combustion in cylindrical combustor was also performed. Predicted distributions of soot particles were compared to the experimental image, and improved agreement with the experimental data was also observed by using the present LES and MCV models. Consequently, results of the present models proved that improved overall performance of the fuel spray simulation can be achieved by the LES without a significant increase in the computational load compared to the RANS.  相似文献   

8.
In this paper, large eddy simulation (LES) of a three-dimensional turbulent lid-driven cavity (LDC) flow at Re = 10,000 has been performed using the multiple relaxation time lattice Boltzmann method. A Smagorinsky eddy viscosity model was used to represent the sub-grid scale stresses with appropriate wall damping. The prediction for the flow field was first validated by comparing the velocity profiles with previous experimental and LES studies, and then subsequently used to investigate the large-scale three-dimensional vortical structures in the LDC flow. The instantaneous three-dimensional coherent structures inside the cavity were visualised using the second invariant (Q), Δ criterion, λ2 criterion, swirling strength (λci) and streamwise vorticity. The vortex structures obtained using the different criteria in general agree well with each other. However, a cleaner visualisation of the large vortex structures was achieved with the λci criterion and also when the visualisation is based on the vortex identification criteria expressed in terms of the swirling strength parameters. A major objective of the study was to perform a three-dimensional proper orthogonal decomposition (POD) on the fluctuating velocity fields. The higher energy POD modes efficiently extracted the large-scale vortical structures within the flow which were then visualised with the swirling strength criterion. Reconstruction of the instantaneous fluctuating velocity field using a finite number of POD modes indicated that the large-scale vortex structures did effectively approximate the large-scale motion. However, such a reduced order reconstruction of the flow based on the large-scale vortical structures was clearly not as effective in predicting the small-scale details of the fluctuating velocity field which relate to the turbulent transport.  相似文献   

9.
We analyse the performance of the explicit algebraic subgrid-scale (SGS) stress model (EASSM) in large eddy simulation (LES) of plane channel flow and the flow in a channel with streamwise periodic hill-shaped constrictions (periodic hill flow) which induce separation. The LESs are performed with the Code_Saturne which is an unstructured collocated finite volume solver with a second-order spatial discretisation suitable for LES of incompressible flow in complex geometries. At first, performance of the EASSM in LES of plane channel flow at two different resolutions using the Code_Saturne and a pseudo-spectral method is analysed. It is observed that the EASSM predictions of the mean velocity and Reynolds stresses are more accurate than the conventional dynamic Smagorinsky model (DSM). The results with the pseudo-spectral method were, in general, more accurate. In the second step, LES with the EASSM of flow separation in the periodic hill flow is compared to LES with the DSM, no SGS model and a highly resolved LES data using the DSM. Results show that the mean velocity profiles, the friction and pressure coefficients, the length and shape of the recirculation bubble, as well as the Reynolds stresses are considerably better predicted by the EASSM than the DSM and the no SGS model simulations. It was also observed that in some parts of the domain, the resolved strain-rate and SGS shear stress have the same sign. The DSM cannot produce a correct SGS stress in this case, in contrast to the EASSM.  相似文献   

10.
We present a new general-purpose advection scheme for unstructured meshes based on the use of a variation of the interface-tracking flux formulation recently put forward by O. Ubbink and R. I. Issa (J. Comput. Phys.153, 26 (1999)), in combination with an extended version of the flux-limited advection scheme of J. Thuburn (J. Comput. Phys.123, 74 (1996)), for continuous fields. Thus, along with a high-order mode for continuous fields, the new scheme presented here includes optional integrated interface-tracking modes for discontinuous fields. In all modes, the method is conservative, monotonic, and compatible. It is also highly shape preserving. The scheme works on unstructured meshes composed of any kind of connectivity element, including triangular and quadrilateral elements in two dimensions and tetrahedral and hexahedral elements in three dimensions. The scheme is finite-volume based and is applicable to control-volume finite-element and edge-based node-centered computations. An explicit–implicit extension to the continuous-field scheme is provided only to allow for computations in which the local Courant number exceeds unity. The transition from the explicit mode to the implicit mode is performed locally and in a continuous fashion, providing a smooth hybrid explicit–implicit calculation. Results for a variety of test problems utilizing the continuous and discontinuous advection schemes are presented.  相似文献   

11.
In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky–Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky–Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame–vortex interaction. In addition, the transition from “corrugated flamelets” to “thin reaction zones” is observed in the simulation.  相似文献   

12.
移动粒子半隐式方法(MPS)是一种粒子方法,多用于模拟带有自由表面的不可压缩流动。工程实际中的自由表面流动往往是复杂的湍流流动,本文借鉴网格类方法的亚格子应力模型发展了基于Smagorinsky模型的亚粒子应力模型,并将其耦合到MPS方法中,实现了基于大涡模拟的MPS方法并用于研究自由表面湍流问题。为了提高计算的准确性和稳定性,SPS模型中出现的一阶导数项采用最小二乘法拟合得到,SPS项采用显式算法进行计算。使用这一算法模拟了溃坝问题,结果表明,采用亚粒子应力模型的模拟结果与实验的吻合程度明显提高。  相似文献   

13.
Purely dissipative eddy-viscosity subgrid models have proven very successful in large-eddy simulations (LES) at moderate resolution. Simulations at coarse resolutions where the underlying assumption of small-scale universality is not valid, warrant more advanced models. However, non-eddy viscosity models are often unstable due to the lack of sufficient dissipation. This paper proposes a simple modeling approach which incorporates the dissipative nature of existing eddy viscosity models into more physically appealing non-eddy viscosity SGS models. The key idea is to impose the SGS dissipation of the eddy viscosity model as a constraint on the non-eddy viscosity model when determining the coefficients in the non-eddy viscosity model. We propose a new subgrid scale model (RSEM), which is based on estimation of the unresolved velocity field. RSEM is developed in physical space and does not require the use of finer grids to estimate the subgrid velocity field. The model coefficient is determined such that total SGS dissipation matches that from a target SGS model in the mean or least-squares sense. The dynamic Smagorinsky model is used to provide the target dissipation. Results are shown for LES of decaying isotropic turbulence and turbulent channel flow. For isotropic turbulence, RSEM displays some level of backward dissipation, while yielding as good results as the dynamic Smagorinsky model. For channel flow, the results from RSEM are better than those from the dynamic Smagorinsky model for both statistics and instantaneous flow structures.  相似文献   

14.
洪正  叶正寅 《气体物理》2019,4(1):33-44
湍流边界层流动是一种广泛存在于飞行器内部和外部的流动现象,是基础理论和模型验证的重要研究对象.能够捕捉大部分流动细节且计算量适中的大涡模拟(large-eddy simulation,LES)方法在湍流数值模拟中得到了越来越广泛的应用.文章基于格心有限差分方法,使用4阶紧致中心格式离散N-S方程无黏项,分别应用5种不同的亚格子(subgrid-scale,SGS)模型,即隐式,SM(Smagorinsky model),DSM(dynamic Smagorinsky model),WALE(wall-adapting local eddy-viscosity model)和CSM(coherent structures model),对Re = 3 000,Ma = 0.5的等温壁面槽道流动进行了大涡模拟研究.与实验值和直接数值模拟(direct numerical simulation,DNS)结果对比后发现,流场平均温度、平均密度等热力学量以及平均流向速度对亚格子模型不敏感,不适宜作为判断模型优劣的判据.亚格子模型在壁面附近的耗散越大,壁面摩擦速度以及阻力系数就越小.对于与速度相关的脉动量来说,不同模型得到的结果在壁面和脉动峰值附近误差比较大,中心线附近较小;显式模型结果在流向速度峰值处均高于参考值,而在展向和壁面法向速度脉动峰值处则均偏低.考虑显式的4种模型在壁面附近的涡黏系数分布,DSM和CSM曲线满足涡黏系数与无量纲壁面距离3次方成正比的分布规律,SM曲线斜率偏小而WALE曲线斜率偏大.   相似文献   

15.
Direct numerical simulations (DNS) of low and high Karlovitz number (Ka) flames are analysed to investigate the behaviour of the reactive scalar sub-grid scale (SGS) variance in premixed combustion under a wide range of combustion conditions (regimes). An order of magnitude analysis is performed to assess the importance of various terms in the variance evolution equation and the analysis is validated using the DNS results. This analysis sheds light on the relative behaviour among turbulent transport and production, scalar dissipation and chemical processes involved in the evolution of the SGS variance at different Ka. The common expectation is that the variance equation shifts from a reaction-dissipation balance at low Ka to a production–dissipation balance at high Ka with diminishing reaction contribution. However, in large eddy simulation (LES), a high Ka alone does not make the reaction term negligible, as the relative importance of the reaction term has a concurrent increase with filter size. The filter size can be relatively large compared with the Kolmogorov length scale in practical LES of high Ka flames, and as a consequence a reaction–production–dissipation balance may prevail in the variance equation even in a high Ka configuration, and this possibility is quantified using the DNS analysis in this work. This has implications from modelling perspectives, and therefore two commonly used closures in LES for the SGS scalar dissipation rate are investigated a priori to estimate the importance of the above balance in LES modelling. The results are explained to highlight the interplay among turbulence, chemistry and dissipation processes as a function of Ka.  相似文献   

16.
A Riemann flux that uses primitive variables rather than conserved variables is developed for the shallow water equations with nonuniform bathymetry. This primitive-variable flux is both conservative and well behaved at zero depth. The unstructured finite-volume discretization used is suitable for highly nonuniform grids that provide resolution of complex geometries and localized flow structures. A source-term discretization is derived for nonuniform bottom that balances the discrete flux integral both for still water and in dry regions. This primitive-variable formulation is uniformly valid in wet and dry regions with embedded wetting and drying fronts. A fully nonlinear implicit scheme and both nonlinear and time-linearized explicit schemes are developed for the time integration. The implicit scheme is solved by a parallel Newton-iterative algorithm with numerically computed flux Jacobians. A concise treatment of characteristic-variable boundary conditions with source terms is also given. Computed results obtained for the one-dimensional dam break on wet and dry beds and for normal-mode oscillations in a circular parabolic basin are in very close agreement with the analytical solutions. Other results for a forced breaking wave with friction interacting with a sloped bottom demonstrate a complex wave motion with wetting, drying and multiple interacting wave fronts. Finally, a highly nonuniform, coastline-conforming unstructured grid is used to demonstrate an unsteady simulation that models an artificial coastal flooding due to a forced wave entering the Gulf of Mexico.  相似文献   

17.
Turbulent piloted Bunsen flames of stoichiometric methane–air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.  相似文献   

18.
Direct numerical simulation (DNS) of passive (non-buoyant) and active (buoyant) scalar homogeneous turbulence is carried out using a standard pseudo-spectral numerical method. The flow settings simulated include stationary forced and decaying passive-scalar turbulence, as well as decaying anisotropic active-scalar turbulence. The Schmidt number is unity in all cases. The results are compared with, and are found to be in very good agreement with, previous similar DNS studies. The well-validated DNS data are divided into 19 sets, and are employed to study different large eddy simulation (LES) subgrid-scale (SGS) models for the SGS scalar flux. The models examined include three eddy-viscosity-type models (Smagorinsky, Vreman and Sigma with a constant SGS Schmidt number), a Dynamic Structure model and two versions of the Gradient (Gradient and Modulated Gradient) model. The models are investigated with respect to their ability to predict the orientation, and the magnitude, of the SGS scalar flux. Eddy-viscosity models are found to predict the magnitude of the SGS scalar flux accurately, but are poor at predicting the orientation of the SGS scalar flux. The Dynamic Structure and Gradient models are better than eddy-viscosity models at predicting both the magnitude and direction. However, neither of them can be realised in an actual LES, without carrying additional transport equations. Based on these observations, four new models are proposed – combining directions from Dynamic Structure and Gradient models, and magnitudes from Smagorinsky and Vreman eddy-viscosity models. These models are expected to be better than eddy-viscosity and Modulated Gradient models, and this is confirmed by preliminary a posteriori tests.  相似文献   

19.
方柱绕流大涡模拟   总被引:4,自引:0,他引:4  
采用有限体/有限元混合格式、非结构网格和大涡模拟方法求解可压缩的N-S方程,对Re=22 000的方柱绕流进行数值模拟,并对不同的边界条件进行详细的分析比较.通过对以往研究经验的总结和利用精细的边界条件,使得采用二阶精度的数值格式和较稀疏的网格仍然得到了令人满意的计算结果,甚至优于以往采用密网格的模拟结果.  相似文献   

20.
Large-eddy simulation of an atomizing spray issuing from a gas-turbine injector is performed. The filtered Navier–Stokes equations with dynamic subgrid scale model are solved on unstructured grids to compute the swirling turbulent flow through complex passages of the injector. The collocated grid, incompressible flow algorithm on arbitrary shaped unstructured grids developed by Mahesh et al. (J. Comp. Phys. 197 (2004) 215–240) is used in this work. A Lagrangian point-particle formulation with a stochastic model for droplet breakup is used for the liquid phase. Following Kolmogorov’s concept of viewing solid particle-breakup as a discrete random process, the droplet breakup is considered in the framework of uncorrelated breakup events, independent of the initial droplet size. The size and number density of the newly produced droplets is governed by the Fokker–Planck equation for the evolution of the pdf of droplet radii. The parameters of the model are obtained dynamically by relating them to the local Weber number and resolved scale turbulence properties. A hybrid particle-parcel is used to represent the large number of spray droplets. The predictive capability of the LES together with Lagrangian droplet dynamics models to capture the droplet dispersion characteristics, size distributions, and the spray evolution is examined in detail by comparing it with the spray patternation study for the gas-turbine injector. The present approach is computationally efficient and captures the global features of the fragmentary process of liquid atomization in complex configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号