首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Recent investigations on sulfur hexafluoride decomposition have shown the need of a rapid and efficient method for the qualitative and quantitative analysis of the reaction products. An analytical method for characterizing the gas mixture obtained from the decomposition of sulfur hexafluoride in a quartz reactor submitted to an r.f. discharge, is presented. A combination of gas-chromatographic, mass spectrometric and infrared spectrophotometric techniques has shown the presence of SF6, SO2F2, SOF4, SOF2, SiF4 and F2 in the gas mixtures examined. For quantitative purposes a gas-chromatographic method has been found to be most suitable.  相似文献   

2.
By-product formation in spark breakdown of SF6/O2 mixtures   总被引:2,自引:0,他引:2  
The yields of SOF4, SO2F2, SOF2, and SO2 have been measured as a function of O2 content in SF6/O2 mixtures, following spark discharges. All experiments were made at a spark energy of 8.7 J/spark, a total pressure of 133 kPa, and for O2 additions of 0, 1, 2, 5, 10, and 20% to SF6. Even for the case of no added O2, trace amounts of O2 and H2O result in the formation of the above by-products. However, addition of O2 significantly increases the yields of SOF4 and SO2F2, while SOF2 is only slightly affected. The net yields for SOF4 and SO2F2 formation range from 0.18×10–9 and 0.64×10–10 mol·J–1, respectively, at 1% O2 content to 10.45×10–9 and 7.15×10–10 mol·J–1, respectively, at 20% O2 content. The mechanism for SOF4 production appears to involve SF4, an important initial product of SF6, as a precursor. Comparison of the SOF4 and SO2F2 yield from spark discharges (arc and corona) shows that the yields from other discharges (arc and corona) shows that the yields can vary by at least three orders of magnitude, depending on the type of discharge and on other discharge parameters.  相似文献   

3.
The absolute yields of gaseous oxyfluorides SOF2, SO2F2, and SOF4 from negative, point-plane corona discharges in pressurized gas mixtures of SF6 with O2 and H2O enriched with18O2 and H2 18O have been measured using a gas chromatograph-mass spectrometer. The predominant SF6 oxidation mechanisms have been revealed from a determination of the relative18O and16O isotope content of the observed oxyfluoride by-product. The results are consistent with previously proposed production mechanisms and indicate that SOF2 and SO2F2 derive oxygen predominantly from H2O and O2, respectively, in slow, gas-phase reactions involving SF4, SF3, and SF2 that occur outside of the discharge region. The species SOF4 derives oxygen from both H2O and O2 through fast reactions in the active discharge region involving free radicals or ions such as OH and O, with SF5 and SF4.  相似文献   

4.
The plasma chemistry of SF6/O2 mixtures is particularly complicated because of the large number of possible reactions. Over a wide range of conditions, products including SF4, SOF4, SOF2, and SO2F2 can be formed but thre is considerable uncertainty about the major reactions which contribute to the formation of these species. In this work reactions of oxygen atoms with SOF2 and fluorine atoms with SOF2 and SO2 have been studied in order to determine the principal sources of SO2F2 in these plasmas. Reactions were studied at 295 K in a gas flow reactor sampled by a mass spectrometer. No reaction could be detected between oxygen atoms and SOF2, which for the conditions employed, means that the upper limit for the reaction rate coefficient is 1×10–14 cm3 sec–1. The reaction of fluorine atoms with SOF2 was studied with the helium bath gas number density ranging from 3.1×1016 to 2.0×1017 cm–3. Within this range the rate coefficient increased with increasing [He] from (4.1 to 10.8)×10–14 cm3 sec–1. SO2 was found to react with fluorine atoms with a rate coefficient which appeared to be independent of the helium bath gas number density over the range given above. The possibility that this reaction occurred entirely on the walls of the reactor is discussed.  相似文献   

5.
The reaction products in the SF6-N2 mixture rf plasma during reactive ion etching of Si and W have been measured by a mass spectrometric method. Two kinds of cathode materials were used in this work; they were stainless steel for the Si etching, and SiO2 for the W etching. The main products detected in the etching experiments of Si and W included SF4, SF2, SO2, SOF2, SOF4, SO2F2, NSF, NF3, N2F4, NxSy, NO2, and SiF4. In the W etching with the SiO2 cathode, additional S2F2, N2O, and WF6 molecules were also obtained. The formation reactions about the novel NSF compound and the sulfur oxyfuorides were discussed.  相似文献   

6.
Discrete electron-molecule processes relevant to SF6 etching plasmas are examined. Absolute, total scattering cross sections for 0.2–12-eV electrons on SF6, SO2, SOF2, SO2F2, SOF4, and SF4, as well as cross sections for negative-ion formation by attachment of electrons, have been measured. These are used to calculate dissociative-attachment rate coefficients as a function ofE/N for SF6 by-products in SF6.  相似文献   

7.
Dissociative and nondissociative electron attachment in the electron impact energy range 0–14 eV are reported for SOF2 SOF4, SO2F2, SF4, SO2, and SiF4 compounds which can be formed by electrical discharges in SF6. The electron energy dependences of the mass-identified negative ions were determined in a time-of-flight mass spectrometer. The ions studied include F and SOF 2 –* from SOF2; SOF 3 and F from SOF4; SO2F 2 –* , SO2F, F 2 , and F from SO2F2; SF 4 –* and F from SF4; O, SO, and S from SO2; and SiF 3 and F from SiF4. Thermochemical data have been determined from the threshold energies of some of the fragment negative ions. Lifetimes of the anions SOF 2 –* , SO2F 2 –* , and SF 4 –* are also reported.  相似文献   

8.
The production ofSOF 4 initiated by the reaction of F atoms withSOF 2 has been studied in a gas-flow reactor at 295 K for helium bath gas number densities in the range (3.0–27.0)×1016 cm–3. The effect of O atoms on the formation ofSOF 4 has been analyzed in terms of the competing reactionsSOF 3+FSOF4 andSOF 3+OSO 2 F 2+F. This analysis leads to the conclusion that the rate coefficients for these two processes are equal within an uncertainty of about 50%. Furthermore, both experiment and calculations indicate that the rate coefficient for reactions between F atoms andSOF 3 is close to its high-pressure limit under the conditions employed. The experiments set a lower limit on this rate coefficient of 5×10–11 cm3 s–1, while calculations based on unimolecular rate theory suggest that it may be greater than 1×10–10 cm3 s–1. These results make it clear that the two reactions shown above cannot explain the relative abundances ofSOF 4 andSO 2 F 2 which are observed inSF 6/O 2 plasmas. This suggests thatSF 2 is a major precursor in the sequence of reactions following the dissociation ofSF 6.  相似文献   

9.
Processes which occur in microwave discharges of dilute mixtures of SF6 and O2 in He have been examined using a flow reactor sampled by a mass spectrometer. Two classes of experiments were performed. In the first set of experiments, mixtures containing 6×1011 cm–3 SF6, 6×1016 cm–3 He, and O2 in the range (0–3.6)×1013 cm–3 were passed through a 20-W 2450-MHz microwave discharge. The gas mixtures arriving at a sample point downstream from the discharge were examined for SF6, SF4, SOF2, SOF4, SO2F2, SO2, F, and O. In the second class of experiments, rate coefficients were measured for the reactions of SF4 with O and O2 and for the reaction of SF with O. The rate coefficient for the reaction of SF with O was found to be (4.2±1.5)×10–11 cm–3 s–1. SF4 was found to react so slowly with both oxygen atoms and oxygen molecules that only upper limits could be placed on the rate coefficients for these reactions. These values were 2×10–14 cm3 s–1 and 5×10–15 cm3 s–1 for reactions with O and O2 respectively. The observed distribution of products from the discharged mixtures is discussed in terms of the measured rate coefficients.  相似文献   

10.
The leakage of sulphur hexafluoride (SF6) gas threats the global climate changes and personnel safety. Monitoring the concentration of SF6 in its application places is an industry regulation. In this study, ion mobility spectrometry (IMS) was developed for fast monitoring traces of SF6 in near-source ambient air. Due to the water is an important part of the natural air and affects most atmospheric measurements, the operating parameters of IMS monitoring SF6 were optimised for quantitative analysis of SF6 at different relative humidity (RH). It is discovered two main product ions SF6? and SOF4? by IMS at different RH. The calibration curves of SF6 were investigated by its relationship with the peak intensity of SOF4 for real application. The time resolution of the measurement was obtained less than 1 s and the limit of detection (LOD) achieved 0.16–0.68 ppm with a data averaging of 30 times. At last, the simulated application of monitoring SF6 leakage was tested in the fume hood of our lab. The results showed a great potential application prospect of IMS in monitoring SF6 in the ambient air of its application places.  相似文献   

11.
Sulfur(VI) fluoride exchange (SuFEx) is a new family of click chemistry based transformations that enable the synthesis of covalently linked modules via SVI hubs. Here we report thionyl tetrafluoride (SOF4) as the first multidimensional SuFEx connector. SOF4 sits between the commercially mass‐produced gases SF6 and SO2F2, and like them, is readily synthesized on scale. Under SuFEx catalysis conditions, SOF4 reliably seeks out primary amino groups [R‐ NH2 ] and becomes permanently anchored via a tetrahedral iminosulfur(VI) link: R−N=(O=)S(F)2. The pendant, prochiral difluoride groups R−N=(O=) SF2 , in turn, offer two further SuFExable handles, which can be sequentially exchanged to create 3‐dimensional covalent departure vectors from the tetrahedral sulfur(VI) hub.  相似文献   

12.
Pentafluorethyl Sulfurtrifluoride: Synthesis and Reactions By oxidation of (C2F5S?)2 ( 1 ) with AgF2 at 0°C a mixture of C2F5SF3 ( 2 ) and C2F5SF5 ( 3 ) besides C2F5S(O)F ( 4 ) is formed. With elemental fluorine only 3 is isolated, an intermediate in this reaction is (C2F5SF4?)2 ( 5 ). At ?40 to ?30°C the mixture of 2, 3 and 4 was reacted with TASF and AsF5, to give TAS+ C2F5SF4? ( 6 ), TAS+ C2F5S(O)F2? ( 7 ) and C2F5SF2+AsF6? ( 8 ), respectively. While 6 and 7 decompose rapidly in solution even at low temperatures, of thermally stable 8 the solid state structure was determined by x-ray diffraction.  相似文献   

13.
Polycrystalline silicon wafers were etched in dc discharges of SF6. SFx species were extracted from the discharges and measured with a mass spectrometer. A systematic procedure was used to measure the SF x + signals such that they are indicators of events in the discharge close to the sample undergoing etching. The picture that emerges is remarkably simple and shows the relative stability of several SFx species including SF6, SF4, SF2, and SF which are shown to be extracted from the discharge both in the presence and absence of the silicon sample. When silicon is being etched on the cathode of the discharge cell, the only significant additional products are SiF4 and S2F2. A comparison of blank and sample data for opposite substrate polarities shows that there is only a small cation-assisted etching effect and suggests that ions do not play an important role in the etching of silicon by SF6 discharges.  相似文献   

14.
Determination of the influence and mechanism of metallic materials on SF6 decomposition under direct current (DC) partial discharge is one of the key aspects to improve SF6 decomposition component analysis (DCA). In this study, three kinds of metallic materials, namely, aluminum, copper, and 18/8 stainless steel, were made into needle–plate electrons, and then used in the SF6 positive DC partial discharge decomposition experiments. The influences of metallic materials on the five main decomposition components (i.e., CF4, CO2, SOF2, SO2F2, and SO2) were determined by gas chromatography–mass spectrometry. Results showed no significant correlation among the contents of CO2 for the different kinds of metallic materials. However, the metallic materials considerably influenced the contents of the other four gases. The difference in SF6 decomposition characteristics for the different metal electrodes was mainly due to the difference in anti-halogenation ability of metals and the passive film. Therefore, the impacts of different metallic materials should be considered when using SF6 DCA for the condition monitoring and fault diagnosis of DC gas-insulated equipment.  相似文献   

15.
Data on the kinetics of S2F10 pyrolysis, which gives SF4 + SF6, have been reinterpreted to give a value for the equilibrium constant of S2F10 ? SF4 + SF6. This, together with statistical estimates of the entropy and heat capacity of S2F10, can be used to give for this reaction values of ΔH = 19.7 ± 1.0 kcal/mole and ΔS = 47.6 ± 2 gibbs/mole. ΔH(S2F10) = –494 kcal/mole. A compatible mechanism is shown to be S2F10 ? 2SF5 (fast); 2SF5 ? SF6 + SF4 (slow) with step 2 rate-determining. The overall, best first order rate constant is proposed as kmeas = 1017.42–43.0/θ sec?1 = K1k2, where θ = 2.303RT in kcal/mole. Independent measurements of δH and S° for the SF5 radical, permits the evaluation of the equilibrium constant K1 = 108.92–(27.1 ± 6)/θ l./mole-sec and yields k2 = 108.50–15.9/θ l./mole-sec. The observed homogeneous catalysis by NO and CHCl ? CHCl can be explained in terms of a direct abstraction of F from S2F10 : C + S2F10 → CF + S2F9, followed by S2F9 → SF5 + SF4 and SF5 + CF ? SF6 + C (C ? NO or C2H2Cl2).  相似文献   

16.
Zusammenfassung Das Trennverfahren der quantitativen Codestillation und Cosublimation ist zur Untersuchung von Schwefel-Fluor-Verbindungen eingesetzt worden, die vorwiegend Schwefel in niedriger Oxidationsstufe enthalten. Die neue Technik, die sich ideal für die Analyse luftempfindlicher und korrosiver Gasmischungen eignet, ermöglichte die Trennung kleiner Stoffmengen von SOF2, SSF2, FSSF und SF3SF durch Destillation und die Charakterisierung dieser Stoffe durch ihre Dampfdrücke sowie die sich daraus ergebenden thennodynamischen Daten der Verdampfung bei sehr niedrigen Drücken. Mischungen aus SF3SF und FSSF sowie FSSF und SSF2 verhalten sich beim Sieden ideal, SSF2 und SF4 bilden ein azeotropes Gemisch mit SF4 im Überschuß. SF6 kann von den weniger flüchtigen Schwefelfluoriden durch Cosublimation leicht abgetrennt werden und als Standard für die Bestimmung von Stoffmengen und molaren Massen durch Verflüchtigung im Stickstoff- und Argonstrom dienen.Die Auswertung der Daten, die bei der Sublimation des Trifluorosulfoniumtetrafluoroborates, SF 3 + BF 4 im Cady-Rohr erhalten wurden, bewiesen, daß die Flüchtigkeit dieser Verbindung auf ihre Dissoziation in SF4 und BF3 zurückzuführen ist.
Investigation of sulfur fluorine compounds by codistillation and cosublimation in the Cady tube
Summary The separation concept of quantitative codistillation and cosublimation has been used to investigate sulfur fluorine compounds with sulfur in a lower oxidation state. The new technique, which is ideally suited to analyse air sensitive and corrosive gas mixtures, enabled the separation of small quantities of SOF2, SF4, SSF2, FSSF and SF3SF by distillation, and to characterize these compounds through their vapour pressures and thermodynamic data of vaporization at low pressures. Mixtures of FSSF and SF3SF, and, FSSF and SSF2 behave ideally on boiling, whereas SSF2 and SF4 form an azeotropic system with SF4 in excess. SF6 can easiliy be separated from the less volatile sulfur fluorides by cosublimation and may be used as a standard for the estimation of the amount of substances and molar masses through volatilization in nitrogen and argon. The evaluation of data obtained through the sublimation of trifluorsulfonium tetrafluoroborate in the Cady tube proved that the votalization process is caused by the dissociation of SF 3 + BF 4 to yield SF4 and BF3.
  相似文献   

17.
CF3S(O)F, (CF3)2SO, CF3SF3, (CF3)2SF2, and SF4 react in different manner with XeF+MF6? (M?As, Sb). An oxidative fluorination is observed by CF3S(O)F forming the persulfonium salt CF3S(O)F2+SbF6?, whereas by (CF3)2SO a simple addition product containing xenon can be isolated in form of the sulfonium salt (CF3)2SOXeF+SbF6?. On the contrary, the Lewis-acidic character of the XeF+-cation predominates against (CF3)nSF4?n (n = 0 ? 2) leading to the corresponding fluorosulfonium salts (CF3)nSF3?n +MF6? (M?As, Sb) and XeF2.  相似文献   

18.
Preparation of (C6F5)2SF+MF6? (M ? As, Sb) and Crystal Structure of (C6F5)2SF+SbF6? XeF+MF6? (M ? As, Sb) reacts with (C6F5)2S in HF to form (C6F5)2SF+MF6?. The deeply violet sulfonium salts can be kept without decomposition up to 24 h at room temperature. The hexafluoroantimonate salt crystallizes in the monoclinic space group P21/n with a = 1056.4(7) pm, b = 1446.3(10) pm, c = 1102.9(8) pm, β = 91.29(6)° und Z = 4. The SF-bond distance with 158.4(3) pm is of unusual length. Cations and anions are connected via interionic fluorine contacts to an infinite chain, in which cations and anions form to ABAB sequence along the chain.  相似文献   

19.
Infrared spectroscopy shows an enormous potential for the analysis of by-products generated from electrical discharges in sulfur-hexafluoride (SF6) insulated equipment. Since by-product composition can be related to the fault genesis (arc, partial discharge or corona), the analysis of contaminated SF6 provides a valuable diagnostic tool. The IR-spectrometric results from discharge experiments are presented, carried out with the application of SF6 pressures around 300?kPa and an alternating voltage up to 30?kV. Under the discharge conditions used, the main by-products found are the sulfuroxyfluorides SOF4 and SO2F2 with concentrations correlated to the discharge time. Due to its toxicity, special attention is also paid to S2F10. The experimental conditions and practical aspects for reliable quantitative analysis of reactive species are discussed.  相似文献   

20.
The multiphoton induced chemistry of trifluorobromomethane (CF3Br), using a pulsed TEA CO2 laser operating in the R branch of the 00°1–02°0 transition, and the effects of pulse number, pressure, and exciting wavelength has been investigated. The photolysis products are C2F6, CF4, CF2Br2, and Br2. A reaction scheme is proposed to account for the observed products and their dependence on experimental conditions. The product yield are found to increase with CF3Br pressure but to decrease with increasing added bath gas pressure (N2 or NO). Varying the exciting wavelength caused a variation in product yields resulting in a spectrum similar to that for single photon absorption but red shifted by ≈10 cm?1. It was also observed that at the wavelength employed 12CF3Br is preferentially dissociated at pressures below 2 Torr. Finally a comparison is made between the results of this work and those done on other freons and SF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号