首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using silyl protected organic hydroxo compounds substitution of fluorine in IF5 is successful.Reacting IF5 with Si(OCH3)4 in CH3CN or SO2 using different molar ratios it was shown that in the series IF5?n(OCH3)n only the first member IF4(OCH3) (n=1) is stable enough to be isolated. The product in solution with n=2 bismutates to products with n=1 and n=3 if isolated as solids. The last one decomposes to the new oxo compound IF2O(OCH3) under elimination of CH3OCH3. With n=4,5 only redox reaction products could be isolated.IF2O(OCH3) can also be obtained by treating IF4(OCH3) with (CH3)6Si2O. Similarly reaction of IF5 with the disiloxane represents a new method to win IOF3. Excess of the oxygen transfer reagent leads to formation of IO2F and I2O5. An other oxo compound, IO(CH3COO)3, can be prepared by disolving IF5, IOF3 or IO2F in acetic acid anhydride.Reactions of IF5 with trimethylsilyl protected fluorinated benzoic acids RfCOOSi(CH3)3 (Rf = C6F5, 4HC6F4) appeared to be independent of the educts molar ratios because the only products are IF(RfCOO)4.In order to stabilize iodine (V) derivates with bifunctional chelating oxo ligands we applicated bis(trimethylsilyl) pinacolate, and in smooth reactions we yielded IF3[OC(CH3)2C(CH3)2O] and IF[OC(CH3)2  C(CH3)2O]2, in which iodine is part of five membered heterocyclic rings. The 19F-nmr-spectra are consistent with the diolate occupying the axiale and equatorial positions.An extension of the silyl method is the new synthesis of C6F5IF4 which could be obtained in the smooth reaction of IF5 with stochiometric amounts of Si(C6F5)4.  相似文献   

2.
C6F5I(CN)2 and x‐FC6H4I(CN)2 (x = 2, 3, 4) were isolated from reactions of the corresponding aryliodine difluorides ArIF2 and a stoichiometric excess of Me3SiCN in CCl3F (0 °C) or CH2Cl2 (20 °C), respectively. In addition, x‐FC6H4I(CN)2 compounds were synthesized in good yields on alternative routes, namely from 3‐ or 4‐FC6H4I(OC(O)CH3)2 or 4‐FC6H4I(OC(O)CF3)2 or from 4‐FC6H4IO and Me3SiCN in CH2Cl2 at 20 °C. In the 1 : 1 reaction of C6F5IF2 and Me3SiCN a lower temperature was necessary to suppress partial disubstitution and to obtain the first example of a new type of aryliodine(III) cyanide compounds, C6F5I(CN)F. 4‐FC6H4I(CN)F could be isolated from the equimolar reaction of 4‐FC6H4IF2 and Me3SiCN in CH2Cl2 even at 20 °C. The new products were characterized by multi‐NMR and Raman spectroscopy. The molecular structures of C6F5I(CN)2, 3‐ and 4‐FC6H4I(CN)2, C6F5I(CN)F, and 4‐FC6H4I(CN)F are discussed and compared with that of C6F5IF2. The reactivity of C6F5I(CN)F towards fluoride acceptors EFn (BF3, AsF5) and RxEX?x (C6F5SiF3, C6H5SiF3, C6H5PF4, Me3SiCl, Me3SiC6F5) were investigated and showed differing reaction patterns (fluoride abstraction, aryl transfer, chloride transfer). Besides the molecular entities C6F5I(CN)F and C6F5I(CN)Cl, the corresponding iodonium salts [C6F5(CN)I][BF4] and [C6F5(CN)I][AsF6] were isolated. The thermal stability of ArI(CN)2 and ArI(CN)F, neat and in solution, as well as the reactivity of 4‐FC6H4I(CN)2 towards the Lewis acid BF3 are reported.  相似文献   

3.
Pentafluorophenyliodine(III) Compounds. 2. Fluorine-Aryl Substitution Reactions on Iodinetrifluoride: Synthesis of Pentafluorophenyliodinedifluoride C6F5IF2 and Bis(pentafluorophenyl)iodonium Pentafluorophenylfluoroborates[(C6F5)2I]+[(C6F5)nBF4?n]? Mono- and disubstitution can be achieved in the fluorine-aryl substitution reaction on the low-temperature phase IF3 in CH2Cl2 at ?78°C depending on the aryl transfer reagent. With B(C6F5)3 [(C6F5)2I]+ [(C6F5)nBF4?n]? (68% yield) and with Cd(C6F5)2 C6F5IF2 (97% yield) is obtained whereas with C6F5SiMe3 no fluorine-aryl substitution takes place on IF3 even under basic conditions (EtCN or F? addition). At ?78°C in EtCN solution IF3 does not disproportionate but attacks the solvent under formation of HF.  相似文献   

4.
Two routes to RFIF6 compounds were investigated: (a) the substitution of F by RF in IF7 and (b) the fluorine addition to iodine in RFIF4 precursors. For route (a) the reagents C6F5SiMe3, C6F5SiF3, [NMe4][C6F5SiF4], C6F5BF2, and 1,4-C6F4(BF2)2 were tested. C6F5IF4 and CF3CH2IF4 were used in route (b) and treated with the fluoro-oxidizers IF7, [O2][SbF6]/KF, and K2[NiF6]/KF. The observed sidestep reactions in case of routes (a) and (b) are discussed. Interaction of C6F5SiX3 (X = Me, F), C6F5BF2, 1,4-C6F4(BF2)2 with IF7 gave exclusively the corresponding ring fluorination products, perfluorinated cyclohexadiene and cyclohexene derivatives, whereas [NMe4][C6F5SiF4] and IF7 formed mixtures of C6FnIF4 and C6FnH compounds (n = 7 and 9). CF3CH2IF4 was not reactive towards the fluoro-oxidizer IF7, whereas C6F5IF4 formed C6FnIF4 compounds (n = 7 and 9). C6F5IF4 and CF3CH2IF4 were inert towards [O2][SbF6] in anhydrous HF. CF3CH2IF4 underwent C-H fluorination and C-I bond cleavage when treated with K2[NiF6]/KF in HF. The fluorine addition property of IF7 was independently demonstrated in case of perfluorohexenes. C4F9CFCF2 and IF7 underwent oxidative fluorine addition at −30 °C, and the isomers (CF3)2CFCFCFCF3 (cis and trans) formed very slowly perfluoroisohexanes even at 25 °C. The compatibility of IF7 and selected organic solvents was investigated. The polyfluoroalkanes CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB), and C4F9Br are inert towards iodine heptafluoride at 25 °C while CF3CH2Br was slowly converted to CF3CH2F. Especially PFP and PFB are new suitable organic solvents for IF7.  相似文献   

5.
A promising approach to the unknown type of [Ar′(Ar)IF2]X salts is offered. x-FC6H4IF4 (x=2, 3, 4) reacts with C6F5BF2 in CH2Cl2 and forms [x-FC6H4(C6F5)IF2][BF4] salts in good yields. For [4-FC6H4(C6F5)IF2][BF4] the fluoro-oxidizer property is shown in reactions with weakly reducing agents like E(C6F5)3 (E=P, As, Sb, Bi) and ArI (Ar=4-FC6H4, C6F5). The fluorine/aryl substitution method is also applied to the synthesis of [(4-FC6H4)2IF2][BF4], an example with two identical aryl groups in the difluoroiodonium(V) moiety.  相似文献   

6.
Perfluoroalkyl iodine compounds: preparations and properties of CF3IO, CF3IOF2, and CF3IO2. The trifluoromethyl iodine compounds CF3IO, CF3IOF2, and CF3IO2 are formed from the reactions of CF3I, CF3IF2 or CF3IF4 with ozone or silicon dioxide respectively. Their preparartions, properties, 19F-nmr spectra, and ir spectra are described.  相似文献   

7.
Pentafluorophenyliodine(V) Compounds. 2. Pentafluorophenyliodine Tetrafluoride C6F5IF4: Synthesis via Fluorine-Aryl-Substitution on IF5 — Properties and Structure. Structural Analysis of the Monovalent Iodine Parent Compound C6F5I The nucleophilic fluorine-aryl substitution reaction on IF5 with pentafluorophenyl, Bi(C6F5)3, leads to C6F5IF4 in good yields and high purity. The thermal stability of C6F5IF4 and its NMR spectrometric behaviour in solution will be described. The crystal structure of C6F5IF4 will be discussed in comparison to IF5. In addition data of the molecular and crystal structure of the monovalent iodine parent compound C6F5I will be given.  相似文献   

8.
The substitution of hypervalently bonded fluorine atoms in C6F5IF4 was performed with C6F5BF2 and resulted in the new salt [(C6F5)2IF2][BF4]. The iodonium(V) salt was characterized by multi‐NMR and Raman spectroscopy and X‐ray crystal structure analysis. The fluorinating ability of the new electrophilic cation [(C6F5)2IF2]+ was exemplified in reactions with monovalent iodine compounds (C6F5I, p‐FC6H4I, and I2) and with electron‐poor tri(organyl)pnictanes ER3 (E = P, As, Sb, Bi; R = C6F5). In a heterogeneous reaction with CsF in MeCN the [(C6F5)2IF2]+ cation forms the dinuclear [{(C6F5)2IF2}2F]+ cation.  相似文献   

9.
Crystal Structure, Infrared and Raman Spectra of Copper Trihydrogenperiodate Monohydrate, CuH3IO6 · H2O The hitherto unknown compound CuH3IO6 · H2O was studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure was determined by X‐ray single‐crystal studies (space group P212121, Z = 4, a = 532.60(10), b = 624.00(10), c = 1570.8(3) pm, R1 = 1.85%, 1559 unique reflections (I > 2σ(I))). Isolated, meridionally configurated H3IO62– ions are coordinated to the copper ions forming double‐ropes in [100]. These ropes are connected in [010] and [001] by hydrogen bonds. The copper ions possess a square pyramidal co‐ordination with the hydrate H2O on top. The infrared and Raman spectra as well as group theoretical treatment are presented and discussed with respect to the strength of the hydrogen bonds and the co‐ordination of the CuO5(+1) polyhedra and the H3IO62– ions at the C1 lattice sites. The hydrogen bonds of the H2O molecules and H3IO62– ions (HO–H…O–IO5H3 and H2IO5O–H…O–IO5H3) greatly differ in strength, as shown from both the respective O…O distances: 282.6 and 298.6 pm (H2O), and 258.8, 259.7, and 270.9 pm (H3IO62–) and the OD stretching modes of isotopically dilute samples: 2498 and 2564 cm–1 (90 K) (HDO), and 1786, 2024, and 2188 cm–1 (H2DIO62–). The IO stretching modes of the H3IO62– ions (696–788 cm–1 and 555–658 cm–1, 295 K) display the different strength of the respective I–O and I–O(H) bonds (rI–O: 181.1–188.3 pm and 189.2–194.5 pm).  相似文献   

10.
Polysulfonyl Amines. XLVI. Molecular Adducts of Di(organosulfonyl)amines with Dimethyl Sulfoxide and Triphenylphosphine Oxide. X-Ray Structure Determination of Di(4-fluorobenzenesulfonyl)amine-Dimethyl Sulfoxide(2/1) From equimolar solutions of the respective components in CH2Cl2/petroleum ether, the following crystalline addition compounds were obtained: (X? C6H4SO2)2NH …? OS(CH3)2, where X = H, 4? CH3, 4? Cl, 4? Br, 4? I, 4? NO2 or 3? NO2; [(4? F? C6H4SO2)2NH]2 · (OS(CH)3)2 ( 8 ); (4? I? C6H4SO2)2NH · OP(C6H5)3. A (2/1) complex of (4? F? C6H4SO2)2NH with OP(C6H5)3 could not be isolated. The solid-state structure of the (2/1) compound 8 is compared with the known structure of the (1/1) complex (CH3SO2)2NH · OS(CH3)2. The crystallographic data for 8 at ?95°C are: monoclinic, space group C2/c, a = 2 369.9(13), b = 1 006.8(4), c = 2 772.6(13) pm, β = 110.71(4)°, U = 6.187 nm3, Z = 8. Two N? H …? O hydrogen bonds with N …? O 275 and 280 pm connect the disulfonylamine molecules with the dimethyl sulfoxide molecule. The O atom of the latter has a trigonal-planar environment consisting of the S atom and the two hydrogen bond H atoms.  相似文献   

11.
We report metathetical reactions of IF5 with series of α,β-trimethylsilylated ethanediolates with increasing numbers of CH3-groups in α- and β-positions. Short lived intermediates IF4[OC2H4?n(CH3)nO]X with X = Si(CH3)3 or IF4 and stable chelates IF3[OC2H4?n(CH3)nO] and IF[OC2H4?n(CH3)nO]2 (n = 0–4) are observed and characterized. Time and temperature dependence of 19F-NMR-spectra in relation to degree of methylation, arrangement and stereo-chemistry are discussed referring to previously published mono- and polynuclear I(V)-compounds containing a series of monodentate alcoholates CH3?n(CH3)nO? and (CH3)3CCH2O? (n = 0,2,3) [1,2] and of bidentate alcoholates ?O(CH2)nO? (n = 2,3,4,5,6,12) [1]. In contrast to aliphatic α,β-diolates the aromatic diolates 1,2-C6H4(O?)2, 1,2-C6Cl4(O?)2 rapidly undergo redox reactions even at low temperatures.  相似文献   

12.
Reaction of phosphorus trichloride with tert-butanol and fluoroalcohols gave bis(fluoroalkyl) phosphites (RFO)2P(O)H in 42-89% yield, where RF=HCF2CH2, H(CF2)2CH2, H(CF2)4CH2, CF3CH2, C2F5CH2, C3F7CH2, (CF3)2CH, (FCH2)2CH, CF3(CH3)2C, (CF3)2CH3C, CF3CH2CH2, C4F9CH2CH2 and C6F13CH2CH2. Treatment of these with chlorine in dichloromethane gave the bis(fluoroalkyl) phosphorochloridates (RFO)2P(O)Cl in 49-96% yield. The chloridate (CF3CH2O)2P(O)Cl was isolated in much lower yield from the interaction of thionyl chloride with bis(trifluoroethyl) phosphite. Heating the latter in dichloromethane with potassium fluoride and a catalytic amount of trifluoroacetic acid gave the corresponding fluoridate (CF3CH2O)2P(O)F in 84% yield. Treatment of bis(trifluoroethyl) phosphite with bromine or iodine gave the bromidate (CF3CH2O)2P(O)Br and iodidate (CF3CH2O)2P(O)I in 51 and 46% yield, respectively. The iodidate is the first dialkyl phosphoroiodidate to have been isolated and characterised properly—its discovery lags behind the first isolation of a dialkyl phosphorochloridate by over 130 years. The fluoroalkyl phosphoryl compounds are generally more stable than known unfluorinated counterparts.  相似文献   

13.
Preparations and Properties of Tris(perfluoroalkyl) Arsenic and Antimony(III, V) Compounds As(Rf)3 and Sb(Rf)3 (Rf?C2F5, C4F9, C6F13) are prepared in good yields by the polar reactions of AsCl3 and SbCl3 with bis(perfluoroalkyl) cadmium compounds as colourless liquids or solids. The oxidation of As(C2F5)3 and Sb(C2F5)3 with XeF2 gives the difluorides M(C2F5)3F2 (M?As, Sb). As(C2F5)3Cl2 is prepared by chlorination of As(C2F5)3 in the presence of AlCl3, while Sb(C2F5)3Cl2 is formed in the reaction of Sb(C2F5)3F2 with (CH3)3SiCl. During the reaction of M(C2F5)3F2 with (CH3)3SiBr 19F-NMR spectroscopic evidence is found for M(C2F5)3 Br2. The thermal decompositions of M(C2F5)3F2 mainly yield C4F10 and M(C2F5)F2, while the thermal decompositions of M(C2F5)3Cl2 yield M(C2F5)2Cl and C2F5Cl. The properties and spectroscopic data of the new compounds are described.  相似文献   

14.
Nucleophilic substitution reactions of iodine pentaflurode with a series of homologous bifunctional alcoholates ?O(CH2)nO? (n=2,3,4,5,6,12), a geminal dialcoholate CC?3 CH(O?)2 and a trifunctional alcoholate CH3C(CH2O?)3 protected by (CH3)3Si - groups are reported. Systems with short CH2 - chains (n<4) first form short lived species IF4[O(CH2)nO]X (X = SiMe3, IF4) which rearrange to mononuclear chelates IF3[O(CH2)nO] of high stability. Dialcoholates with long CH2-chains (n>4) behave as bridging ligands forming stable multinuclear compounds IF4[O(CH2)nO]IF4 and {IF3[O(CH2)nO]}m (m≥2). 1,4-Butanediolate is on the border line of the two systems.Products with greater substitution IF[O(CH2)nO]2 (n=2,3) and IF2(OCH2)3CCH3 are also characterized.The dependence of 19F-NMR-shifts on the nature and arrangement of ligands is discussed.  相似文献   

15.
Decomposition and side reactions of pentafluorophenylmagnesium bromide and pentafluorophenyllithium, when used in syntheses, have been investigated using GC/MS techniques. Reactions with reagents such as C6F5X (X = H, F, Cl, Br, I), C6F4X2 (X = H, Cl), C6F3Cl3, C6H6, (C6X5)3P (X = H, F), (C6X5)3P=O (X = H, F), (C6X5)Si(CH3)3 (X = H, F) and (CH3)4-nSiCln, n = 1, 2, in ether or ether/n-hexane were studied.In addition to the principal reaction of synthetic use, namely the replacement of a halogen by a pentafluorophenyl group, two types of side reactions were observed. These were (i) intermolecular loss of LiF via a nucleophilic substitution, and (ii) intramolecular loss of LiF, followed by the addition of either, inorganic salts such as lithium or magnesium halides, or organometal compounds such as organolithium or Grignard reagent present in the system. GC/MS proved to be an ideal method of monitoring such organometallic reaction systems, although it was sometimes not possible to identify byproducts as a particular isomer.  相似文献   

16.
One-pot oxidation of R3Sb (R=Ph, Me, Cl, or C6F5) withtert-butyl hydroperoxide in the presence of 1,2-diols and monodentate donor compounds was studied. The structures of the resulting neutral organic donor-acceptor SbV complexes, Ph3(C6H4O2)Sb…OSMe2, Ph3(C6H4O2)Sb…ONC5H5, Me3(C6H4O2)Sb…ONC5H5, Me3(C6H4O2)Sb…NC5H5, Ph3(C2H4O2)Sb…ONC5H5, and Cl(C6F5)2(C2H4O2)Sb…OPPh3, were established by X-ray diffraction analysis. In these complexes, the coordination environment about the Sb atoms is a distorted octahedron. The Sb?O(N) distances and the Sb?O?E angles (E=S, N, or P) vary over wide ranges.  相似文献   

17.
The reaction of alkynyldifluoroboranes RC≡CBF2 (R = (CH3)3C, CF3, (CF3)2CF) with organyliodine difluoride R′IF2 bearing electron‐withdrawing polyfluoroorganyl groups R′ = C6F5, (CF3)2CFCF=CF, C4F9, and CF3CH2 leads to the corresponding alkynyl(organyl)iodonium salts [(RC≡C)(R′)I][BF4]. This approach uses a widely applicable method as demonstrated for a representative series of polyfluorinated aryl‐, alkenyl‐, and alkyliodine difluorides. Generally, these syntheses proceed with good yields and deliver pure iodonium salts. The distinct electrophilic nature of their [(RC≡C)(R′)I]+ cations is deduced from multinuclear magnetic resonance data. Within the series of new iodonium salts [CF3C≡C(C4F9)I][BF4] is an intrinsic unstable one and decomposed forming CF3C≡CI and C4F10.  相似文献   

18.
Pentafluorophenyliodine(III) Compounds. 4 [1] Aryl(pentafluorophenyl)iodoniumtetrafluoroborates: General Method of Synthesis, Typical Properties, and Structural Features Aryl(pentafluorophenyl)iodoniumtetrafluoroborates [Ar′Ar″I][BF4] (Ar′ = C6F5, Ar″ = C6H5, o‐C6H4F, m‐C6H4F, p‐C6H4F, 2,6‐C6H3F2, 3,5‐C6H3F2, 2,4,6‐C6H2F3, 3,4,5‐C6H2F3, C6F5) are prepared in good yields and high purity by the reaction of C6F5IF2 with Ar″BF2 in CH2Cl2. This convenient method can be applied generally to many iodonium compounds. Thermal and spectroscopic properties (1H, 13C, 19F NMR, IR, Raman) are reported and discussed. The solid state structures of six iodonium compounds show significant cation‐anion interactions which result in two different arrangements: a dimer with a 8‐membered ring or polymers with infinite zigzag chains. Ab initio calculations on prototypes of aryliodonium cations show relations between the kind of the aryl group (C6H5 vs. C6F5) and structural parameters as well as charges. By means of 19F NMR the σI‐ and σR‐constants of the [C6F5I]+‐substituent are determined.  相似文献   

19.
A highly labile dimer of hydrogen cyanide, HCN???HCN, was extracted from liquid HCN by adduct formation with the bulky Lewis acid B(C6F5)3, affording HCN???HCN?B(C6F5)3, which was fully characterized. The influence of the solvent (HCN, CH2Cl2, and aromatic hydrocarbons) on the crystallization process was studied, revealing dimer formation when using HCN or CH2Cl2 as solvent, whereas aromatic hydrocarbons led to the formation of monomeric arene??HCN?B(C6F5)3 adducts, additionally stabilized by η6‐coordination of the aromatic ring system similar to well‐known half‐sandwich complexes.  相似文献   

20.
The preparation of some new phosphorus-fluoroamides of the type RP(O)FNH2 is described (R = CH3O-, C6H5O-, NH2-, C2H5O-, CH3NH-, C2H5NH-, C6H5-, C6H11-, C2H5-, CH3-, and C6H5S-). All of the R? P(O)FNH2 compounds were prepared at ?80°C in diethylether from the corresponding difluorides RP(O)F2 and ammonia: RP(O)F2 + 2NH3 → RP(O)FNH2 + NH4F. When P(O)FCl2 is reacted with ammonia in a molar ratio of 1:4, the hitherto unknown diamide of the series P(O)F3?n(NH2)n (n = 1,2,3) is formed. As starting compounds, CH3OP(O)F2 and CH3NHP(O)F2 were obtained for the first time. The shifts of characteristic valency frequencies and some nmr data are discussed in homologous series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号