首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of bis(fluoroalkyl) phosphites (RFCH2O)2P(O)H, where RF was CF3 or C2F5 with sulfur in pyridine at 80 °C gave salts of structure [(RFCH2O)2P(O)SH]NC5H5 in 90 and 88% yield, respectively. The salts reacted with alkyl iodides in acetonitrile at 50 °C to furnish bis(fluoroalkyl) S-alkyl phosphorothiolates (RFCH2O)2P(O)SR, where R was Me, Et, n- and i-Pr (when RF = CF3) and Me (when RF = C2F5). Yields ranged from 21 to 57%. Bis(trifluoroethyl) S-methyl phosphorothiolate (CF3CH2O)2P(O)SMe underwent fluorination by silver(I) fluoride in acetonitrile at room temperature to yield the phosphorofluoridate (CF3CH2O)2P(O)F in 75% yield. Tris(fluoroalkyl) phosphorothionates (RFCH2O)3P = S, where RF was CF3, C2F5 and C3F7, were prepared in 30-34% yield by heating the tris(fluoroalkyl) phosphites (RFCH2O)3P and sulfur to 200 °C in a sealed tube for 8 h.  相似文献   

2.
Forty bis(fluoroalkyl) phosphoramidates (RFO)2P(O)R were prepared in 10-91% yield by treating phosphorochloridates (RFO)2P(O)Cl where RF was HCF2CH2, HCF2CF2CH2, HCF2CF2CF2CF2CH2, CF3CH2, C2F5CH2, C3F7CH2, (CF3)2CH, (FCH2)2CH and (CH3)2CF3C with nucleophiles HR, where R was NH2, NHMe, NMe2, NHEt and NEt2 in diethyl ether at 0-5 °C. The bulky chloridate [(CH3)2CF3CO]2P(O)Cl reacted with ammonia, methylamine, dimethylamine and ethylamine, but not with diethylamine—even on heating in the presence of 4-dimethylaminopyridine—due to steric hindrance at phosphorus. Fluorinated phosphoramidates have lower basicity and nucleophilicity than their unfluorinated counterparts: (EtO)2P(O)NH2 is more easily hydrolysed by HCl than (CF3CH2O)2P(O)NH2 and whereas, (EtO)2P(O)NH2 is known to react with oxalyl chloride and thionyl chloride to give (EtO)2P(O)NCO and (EtO)2P(O)NSO respectively, (CF3CH2O)2P(O)NH2 reacted only with oxalyl chloride to give (CF3CH2O)2P(O)NCO in 10% yield. Two other new fluorinated species, (CF3CH2O)2P(O)NHOMe and (CF3CH2O)2P(O)N3, were prepared by nucleophilic substitution of bis(trifluoroethyl) phosphorochloridate with methoxyamine and azide ion.  相似文献   

3.
The reactivity of bis(fluoroalkyl) phosphorochloridates to nucleophiles is summarised. Previous data and the results described here indicate that reactivities decrease in the order: amines>alcohols>thiols. The synthesis of CF3CH2OP(O)(SEt)2 in 30% yield was accomplished by treating CF3CH2OP(O)Cl2 with two molar equivalents of EtSH and Et3N in ether. The chloridates (CF3CH2O)2P(O)Cl and (C2F5CH2O)2P(O)Cl did not react with MeSH in ether at −78 °C or when heated with Pb(SMe)2 in benzene. Ethanethiol and propanethiol reacted with fluorinated chloridates in the presence of triethylamine to give thiolates (RFO)2P(O)SR in 13-41% yield where RF was CF3CH2, C2F5CH2, C3F7CH2 or (CF3)2CH and R was Et or n-Pr. Similarly, reaction of phosphorobromidates (RFCH2O)2P(O)Br, made by brominating the corresponding bis(fluoroalkyl) H-phosphonates, with benzenethiol gave derivatives (RFCH2O)2P(O)SPh in 43 and 46% yield where RF was CF3 and C2F5, respectively. Treatment of the chloridothiolate Cl(EtO)P(O)SMe, prepared in two steps from triethyl phosphite, with fluoroalcohols and triethylamine in ether gave species RFO(EtO)P(O)SMe in 62-74% yield where RF was CF3CH2, C2F5CH2, C3F7CH2 or (CF3)2CH. The reactions of bis(trifluoroethyl) phosphorochloridate with 2-mercaptoethanol, 3-mercaptopropanol and ethane-1,2-dithiol gave several unexpected products whose structures were tentatively assigned.  相似文献   

4.
Twenty nine bis(fluoroalkyl) phosphates (RFO)2P(O)OR were prepared in 18-75% yield by treating phosphorochloridates (RFO)2P(O)Cl, where RF was HCF2CH2, HCF2CF2CH2, H(CF2)4CH2, C2F5CH2, C3F7CH2, (CF3)2CH, (FCH2)2CH and (CH3)2CF3C with methanol, ethanol, propanol and isopropanol in diethyl ether in the presence of triethylamine. The bulky chloridate [(CH3)2CF3CO]2P(O)Cl reacted with methanol, ethanol and propanol, but not with isopropanol - even on heating in the presence of the catalyst 4-dimethylaminopyridine - due to steric hindrance at phosphorus. The relative reactivities of three of the chloridates decreased in the order [(CF3)2CHO]2P(O)Cl > [(FCH2)2CHO]2P(O)Cl > [(CH3)2CF3CO]2P(O)Cl. Also described is the synthesis of phosphates (CF3CH2O)2P(O)OCH2R, where R = CH2Br, CH2Cl, CH2F and CHF2, and diphosphates [H(CF2)nCH2O]2P(O)OCH2(CF2)2CH2OP(O)[OCH2(CF2)nH]2, where n = 1, 2 and 4.  相似文献   

5.
Dimethyl phosphorochloridate reacted with RFCH2NH2 in ether in the presence of Et3N to afford (MeO)2P(O)NHCH2RF, where RF = CF3 and C2F5, in 39 and 47% yield, respectively. Similar reactions with di-n-propyl and diisopropyl phosphorochloridates could be effected only with H2NCH2CF3 when 4-dimethylaminopyridine catalyst was added and (n-PrO)2P(O)NHCH2CF3 and (i-PrO)2P(O)NHCH2CF3 were isolated in 49 and 25% yield, respectively. Treatment of POCl3 with one molar equivalent each of H2NCH2CF3 and Et3N permitted the synthesis of Cl2P(O)NHCH2CF3 in 43% yield. Bis(fluoroalkyl) phosphorochloridates (RFO)2P(O)Cl, where RF = C2F5CH2, C3F7CH2 and (CF3)2CH, reacted with 2,2,2-trifluoroethylamine and 2,2,3,3,3-pentafluoropropylamine to furnish phosphoramidates (RFO)2P(O)NHCH2R, where R = CF3 or C2F5, in yields of 32-67%.  相似文献   

6.
Ten fluoromonomers of structure (RFO)2P(O)OCH2CH2OC(O)CRCH2 were made in 30-64% yield by treating the chloridates (RFO)2P(O)Cl with HOCH2CH2OC(O)CRCH2 in chloroform in the presence of triethylamine [RF=CF3CH2, C2F5CH2, C3F7CH2, C4F9CH2, C4F9CH2CH2 or C6F13CH2CH2; R  H or Me]. The chloromonomer (CCl3CH2O)2P(O)OCH2CH2OC(O)CHCH2 was obtained analogously in 29% yield. Polymerisation of the acrylate monomers, but not the methacrylate monomers, could be effected using α-azoisobutyronitrile as a radical initiator. Acrylic polymers having CF3CH2O, CCl3CH2O and C6F13CH2CH2O side-chains were obtained as translucent rubbers. Specimens of cotton fabric were treated with solutions of the polymers, and average water and oil repellency ratings measured. Fabric coated with the polymer with the C6F13CH2CH2O side-chain afforded protection from penetration of the test liquids. Treated fabrics were subjected to the limiting oxygen index (LOI) test according to BS EN ISO 4589-2 (1999): this test determines the point at which a material just burns in a volumetric flow of oxygen and nitrogen. The treated fabrics were more fire-resistant (LOI 22-29%) than the untreated fabric (LOI 18%). Fabric coated with the CCl3CH2O-based polymer can be considered fire-retardant (LOI 29%). The fluoromonomers were tested for anti-acetylcholinesterase activity and were found to be poor enzyme inhibitors; they are predicted to possess low acute toxicity.  相似文献   

7.
Stable polyfluorinated bis- and tris-(alkoxy)methyl cations were prepared by the reaction of the corresponding difluoroformals (RfO)2CF2 (Rf = -CH2CF3, -CH(CF3)2, -CH2CF2Cl) with an excess of SbF5. Although the cation (CF3CH2O)2CF+ (1a) is stable at ambient temperature, the chlorinated analog (ClCF2CH2O)2CF+ (3a) can be generated only at low temperature in SO2ClF solvent and rapidly decomposes at ambient temperature. Although the salt [(CF3)2CHO]2CF+SbnF5n+1 (2a) is slightly more stable than the salt of cation 3a, at ambient temperature it undergoes rapid disproportionation with formation of equal amounts of [(CF3)2CHO]3C+SbnF5n+1 (2b) and CF3OCH(CF3)2 (2c). Stable solid salt 2b (n = 2) was isolated and fully characterized by 1H, 19F and 13C NMR spectroscopy and its structure was confirmed by single crystal X-ray diffraction.  相似文献   

8.
A series of previously unknown asymmetrical fluorinated bis(aryl)bromonium, alkenyl(aryl)bromonium, and alkynyl(aryl)bromonium salts was prepared by reactions of C6F5BrF2 or 4-CF3C6H4BrF2 with aryl group transfer reagents Ar′SiF3 (Ar′ = C6F5, 4-FC6H4, C6H5) or perfluoroorganyl group transfer reagents RF′BF2 (RF = C6F5, trans-CF3CFCF, C3F7C≡C) preferentially in weakly coordinating solvents (CCl3F, CCl2FCClF2, CH2Cl2, CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB)). The presence of the base MeCN and the influence of the adducts RF′BF2·NCMe (RF = C6F5, CF3C≡C) on reactions aside to bromonium salt formation are discussed. Reactions of C6F5BrF2 with AlkF′BF2 in PFP gave mainly C6F5Br and AlkF′F (AlkF′ = C6F13, C6F13CH2CH2), presumably, deriving from the unstable salts [C6F5(AlkF′)Br]Y (Y = [AlkF′BF3]). Prototypical reactivities of selected bromonium salts were investigated with the nucleophile I-and the electrophile H+. [4-CF3C6H4(C6F5)Br][BF4] showed the conversion into 4-CF3C6H4Br and C6F5I when reacted with [Bu4N]I in MeCN. Perfluoroalkynylbromonium salts [CnF2n+1C≡C(RF)Br][BF4] slowly added HF when dissolved in aHF and formed [Z-CnF2n+1CFCH(RF)Br][BF4].  相似文献   

9.
A review of the methods available for the preparation of monodentate P(III) compounds containing fluoroalkenyl, fluoroalkynyl and fluoroalkyl groups is given. The synthesis, properties and coordination chemistry of some fluoroalkenyl- and fluoroalkynyl-containing phosphines derived from HFC-134a (CF3CH2F) and HFC-245fa (CF3CH2CH2F) is summarised. The development of the reaction between trimethylsilyl-containing phosphines and RfI which provides a general method by which bulky fluoroalkyl groups, such as i-C3F7, t-C4F9, c-C6F11, can be readily introduced into phosphorus(III) centres is reported. Together these methods provide a way of generating P(III) systems of the type R3−nP(Rf)n capable of possessing a wide range of steric and electronic properties.  相似文献   

10.
Crystal and Molecular Structure of Bis(pyridine)bis(trifluoromethyl)zinc Bis(pyridin)bis(trifluoromethyl)zinc 1 has been isolated and characterized by means of single-crystal X-ray diffraction techniques. The title compound represents the first structure determination of a fully fluorinated alkylzinc compound (monoclinic, space group P21/c, Z = 4, a = 8.856(3), b = 18.158(3), c = 8.979(3) Å, β = 98.14(2)°, R = 0.054, Rw = 0.035). The zinc atom is in a distorted tetrahedral environment. The molecular structure of [ClZn(CCl2CF3) η2O]2 2 was solved, but is not included in a structural comparison due to crystallographic disorder.  相似文献   

11.
Bromonium salts [(RF)2Br]Y with perfluorinated groups RFC6F5, CF3CFCF, C2F5CFCF, and CF3C≡C were isolated from reactions of BrF3 with RFBF2 in weakly coordinating solvents (wcs) like CF3CH2CHF2 (PFP) or CF3CH2CF2CH3 (PFB) in 30-90% yields. C6F5BF2 formed independent of the stoichiometry only [(C6F5)2Br][BF4]. 1:2 reactions of BrF3 and silanes C6F5SiY3 (Y = F, Me) ended with different products - C6F5BrF2 or [(C6F5)2Br][SiF5] - as pure individuals, depending on Y and on the reaction temperature (Y = F). With C6F5SiF3 at ≥−30 °C [(C6F5)2Br][SiF5] resulted in 92% yield whereas the reaction with less Lewis acidic C6F5SiMe3 only led to C6F5BrF2 (58%). The interaction of K[C6F5BF3] with BrF3 or [BrF2][SbF6] in anhydrous HF gave [(C6F5)2Br][SbF6]. Attempts to obtain a bis(perfluoroalkyl)bromonium salt by reactions of C6F13BF2 with BrF3 or of K[C6F13BF3] with [BrF2][SbF6] failed. The 3:2 reactions of BrF3 with (C6F5)3B in CH2Cl2 gave [(C6F5)2Br][(C6F5)nBF4−n] salts (n = 0-3). The mixture of anions could be converted to pure [BF4] salts by treatment with BF3·base.  相似文献   

12.
Bis(3-F-alkylallyl) polyoxyethylene ethers were obtained via radical addition of F-alkyl iodides on bis(allyl) ethers CH2CH(CH2OCH2)nCHCH2 followed by 1,8-diazabicyclo[5.4.0]undec-7-ne (DBU) dehydrohalogenation.  相似文献   

13.
Synthesis and Properties of Tetrakis(Perfluoroalkyl)Tellurium Te(Rf)4 (Rf = CF3, C2F5, C3F7, C4F9) Te(CF3)4 is obtained from the reaction of Te(CF3)Cl2 with Cd(CF3)2 complexes as a complex with e. g. CH3CN, DMF. It is a light and temperature sensitive hydrolysable liquid. The reaction with fluorides yields the complex anion [Te(CF3)4F]?, with fluoride ion acceptors the complex cation [Te(CF3)3]+. With traces of water an acidic solution is formed. Te(CF3)4 acts as a trifluoromethylation reagent. The reaction with XeF2 gives hints for the formation of Ye(CF3)4F2. Properties and NMR spectra are discussed. The much more stable complexes of Te(Rf)4 (Rf = C2F5, C3F7, C4F9) are formed from the reaction of TeCl4 with the corresponding Cd(Rf)2 complexes.  相似文献   

14.
New synthetic pathways and the infrared spectrum of bis(fluorosulfonyl)difluoromethane, (SO2F)2CF2, are reported. The geometric structure and conformational properties of the title compound have been studied by gas electron diffraction. Depending on the rotational position of the two SO2F groups, four conformers with different symmetries can occur in this compound: C2v symmetry, if both S? F bonds stagger the CF2 group. C2 or Cs symmetry, if one S?O bond of each group staggers the CF2 group. The experimental electron diffraction intensities can be fitted equally well with a C1 conformer or with a mixture of C2v, C2 and Cs conformers, in a ratio of 3:2:5. The following geometric parameters (ra distances, ∠α angles with 3σ uncertainties) were derived: C? F = 1.340(6) Å, S?O = 1.412(2) Å, S? F = 1.550(3) Å, C? S = 1.848(4) Å, S? C? S = 113.6(7)°, F? C? F = 110.0(10)°, O?S?O = 124.6(18)°, C? S? F = 96.5(16)° and C? S?O = 108.4(14)°.  相似文献   

15.
Secondary phosphines R2PH [R = Ph(CH2)2, 4-t-BuC6H4(CH2)2, 4-MeOC6H4(CH2)2, 2-Naphth(CH2)2] react with two equivalents of elemental selenium under mild conditions (85 °C, 3 h, toluene) to afford bis(diorganoselenophosphoryl)selenides (R2PSe)2Se in high yields (75-92%).  相似文献   

16.
Perfluoroalkenyl phosphonates were formed along with Me3SiF using CF3CF=CF2, CF3CH=CF2, F5SCF=CF2 or F5SCH=CF2 and silylated phosphites, (R1O)2POSiMe3 (R1=Et, SiMe3). This straightforward method could be extended to perfluorobutadienes CF2=C(RF)C(RF)=CF2 (RF F=F, CF3). The formation of CF3C(=O)P(=O)(OSiMe3)2 and further reactions to yield bisphosphonates will be described. Acetylphosphonates, R2C(=O)P(=O)(OSiMe3)2 (R2=CH3, CF3) reacted with the ketimine, CH3C(=NiPr)Ph to give α-hydroxy-γ-imino phosphonates. Trifluoroacetylphenol and 2,6-bis(trifluoracetyl)-4-methyl-phenol have been proven to be versatile precursors for α-and γ-hydroxy phosphonates. Intermediates in these reactions were found to be cyclic λ5σ5P species.  相似文献   

17.
To better understand the effects of ligand configuration on hydroformylation reactions carried out in the presence of LiBPh4·3dme (dme = 1,2-dimethoxyethane), a conformationally restrained bis(phosphite) ligand derived from 1,2-bis-(2-hydroxyethoxy)benzene, {[(2,2′-O2C12H8)P(C2H4O2)]2C6H4}, 1, has been prepared and its Rh(I) metallacrown ether complex has been evaluated as a catalyst for the hydroformylation of styrene. Both the activity and regioselectivity of the catalyst are sensitive to the amount of the LiBPh4·3dme added with the activity decreasing by 16% and the regioselectivity for the iso increasing by 9% at a 8:1 LiBPh4:Rh ratio.Model complexes for the octahedral, cis-Mo(CO)4(1), 2, and square planar, cis-PtCl2(1), 3, and cis-PdCl2(1), 4, complexes in the catalytic cycle has been have been studied using multinuclear NMR spectroscopy and X-ray crystallography. Although the X-ray crystal structure of 2 suggests that the metallacrown ether ring could adopt a configuration capable of binding alkali metal cations, this does not appear to occur in a dichloromethane-d2 solution of 2 because no shift in the 31P NMR resonance 2 is observed upon the addition of an excess of LiBPh4·3dme. The 31P{1H} NMR spectra of chloroform-d solutions of 2 (in the presence of a catalytic amount of HgCl2) and of 4 and the X-ray crystal structures of the complexes indicate that the bis(phosphite) ligands are cis coordinated in these complexes in both the solution and in the solid state. This is particularly surprising for 4 because related PdCl2{Ph2P(CH2CH2O)nCH2CH2PPh2} (n = 3-5) complexes exhibit both cis-trans and monomer-oligomer equilibria in solution.  相似文献   

18.
Preparations and Properties of Tris(perfluoroalkyl) Arsenic and Antimony(III, V) Compounds As(Rf)3 and Sb(Rf)3 (Rf?C2F5, C4F9, C6F13) are prepared in good yields by the polar reactions of AsCl3 and SbCl3 with bis(perfluoroalkyl) cadmium compounds as colourless liquids or solids. The oxidation of As(C2F5)3 and Sb(C2F5)3 with XeF2 gives the difluorides M(C2F5)3F2 (M?As, Sb). As(C2F5)3Cl2 is prepared by chlorination of As(C2F5)3 in the presence of AlCl3, while Sb(C2F5)3Cl2 is formed in the reaction of Sb(C2F5)3F2 with (CH3)3SiCl. During the reaction of M(C2F5)3F2 with (CH3)3SiBr 19F-NMR spectroscopic evidence is found for M(C2F5)3 Br2. The thermal decompositions of M(C2F5)3F2 mainly yield C4F10 and M(C2F5)F2, while the thermal decompositions of M(C2F5)3Cl2 yield M(C2F5)2Cl and C2F5Cl. The properties and spectroscopic data of the new compounds are described.  相似文献   

19.
Pseudo first‐order rate constants of the reaction of diethyl(ethyl cyanoacetato)aluminum [(C2H5)2Al(NCCHCOOC2H5)] with 17 fluorinated acrylates and methacrylates and five hydrocarbon analogs for references were investigated to examine the initiation reactivities of the anionic polymerization of fluorinated vinyl monomers to afford the reactivity order: CH2?C(CF3)COOC2H5 > CH2?C(CF3)COOCH(CH3)2 > CH2?CHCOOCH2C6F5 > CH2?C(CF3)COOC(CH3)3 > CH2?C(CF3)COOCH2C6F5 > CH2?C(CF3)COOCH(CF3)2 ≥ CH2?CHCOOCH3 > CH2?CHCOOCH2C6H5 ≥ CH2?C(CF3)COOCH2CF3 > CH2?C(CH3)COOCH2C6F5 > CH2?CHCOOCH2CF3 > CH2?CHCOOCH2C2F5 > CH2?CHCOOCH(CF3)2 > CH2?C(CH3)COOCH3 > CH2?C(CH3)COOCH2C6H5 ≥ CH2?C(CH3)COOCH2CH2C8F17 > CH2?C(CH3)COOCH(CH3)2 > CH2?C(CH3)COOCH2C2F5 ≥ CH2?C(CH3)COOCH2CF3. No rate constants for CH2?C(CH3)COOCH(CF3)2, CH2?CFCOOC(CH3)3, and CH2?CFCOOCH2C2F5 were obtained because of too fast polymerization. The incorporation of a trifluoromethyl group into the vinyl group enhanced the reactivity toward the delocalized carbanion. The reactivity of other fluorinated acrylates and methacrylates was concluded to approximately be controlled by the fluorine contents and the bulkiness of substituents of monomers. The reactivity was generally decreased by increasing fluorine contents of fluoroalkyl substituents in ester groups. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7011–7021, 2008  相似文献   

20.
Molybdenum(VI) bis(imido) complexes [Mo(NtBu)2(LR)2] (R=H 1 a ; R=CF3 1 b ) combined with B(C6F5)3 ( 1 a /B(C6F5)3, 1 b /B(C6F5)3) exhibit a frustrated Lewis pair (FLP) character that can heterolytically split H−H, Si−H and O−H bonds. Cleavage of H2 and Et3SiH affords ion pairs [Mo(NtBu)(NHtBu)(LR)2][HB(C6F5)3] (R=H 2 a ; R=CF3 2 b ) composed of a Mo(VI) amido imido cation and a hydridoborate anion, while reaction with H2O leads to [Mo(NtBu)(NHtBu)(LR)2][(HO)B(C6F5)3] (R=H 3 a ; R=CF3 3 b ). Ion pairs 2 a and 2 b are catalysts for the hydrosilylation of aldehydes with triethylsilane, with 2 b being more active than 2 a . Mechanistic elucidation revealed insertion of the aldehyde into the B−H bond of [HB(C6F5)3]. We were able to isolate and fully characterize, including by single-crystal X-ray diffraction analysis, the inserted products Mo(NtBu)(NHtBu)(LR)2][{PhCH2O}B(C6F5)3] (R=H 4 a ; R=CF3 4 b ). Catalysis occurs at [HB(C6F5)3] while [Mo(NtBu)(NHtBu)(LR)2]+ (R=H or CF3) act as the cationic counterions. However, the striking difference in reactivity gives ample evidence that molybdenum cations behave as weakly coordinating cations (WCC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号