首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a new hybrid scheme is introduced for the solution of the Boussinesq equations. In this study, the hybrid scheme is used to solve another form of the Boussinesq equations. The hybrid solution is composed of finite‐volume and finite difference method. The finite‐volume method is applied to conservative part of the governing equations, whereas the higher order Boussinesq terms are discretized using the finite‐difference scheme. Fourth‐order accuracy is provided in both time and space. The solution is then applied to several test cases, which are taken from the previous studies. The results of this study are compared with experimental and theoretical results as well as those of the previous ones. The comparisons indicate that the Boussinesq equations solved here and in the previous study produce quite similar results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A two‐dimensional depth‐integrated numerical model is developed using a fourth‐order Boussinesq approximation for an arbitrary time‐variable bottom boundary and is applied for submarine‐landslide‐generated waves. The mathematical formulation of model is an extension of (4,4) Padé approximant for moving bottom boundary. The mathematical formulations are derived based on a higher‐order perturbation analysis using the expanded form of velocity components. A sixth‐order multi‐step finite difference method is applied for spatial discretization and a sixth‐order Runge–Kutta method is applied for temporal discretization of the higher‐order depth‐integrated governing equations and boundary conditions. The present model is validated using available three‐dimensional experimental data and a good agreement is obtained. Moreover, the present higher‐order model is compared with fully potential three‐dimensional models as well as Boussinesq‐type multi‐layer models in several cases and the differences are discussed. The high accuracy of the present numerical model in considering the nonlinearity effects and frequency dispersion of waves is proven particularly for waves generated in intermediate and deeper water area. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Application of the three‐point fourth‐order compact scheme to spatial differencing of the vorticity‐stream function‐density formulation of the two‐dimensional incompressible Boussinesq equations is presented. The details for the derivation of difference relations at boundaries to generate accurate and stable solutions are also given. To assess the numerical accuracy, two linear prototype test problems with known exact solution are used. The two‐dimensional planar and cylindrical lock‐exchange flow configurations are used to conduct the numerical experiments for the Boussinesq equations. Quantitative measures for the two linear prototype test problems and comparison of the results of this work with the published results for the planar lock‐exchange flow indicates the validity and accuracy of the three‐point fourth‐order compact scheme for numerical solution of two‐dimensional incompressible Boussinesq equations. In addition, the study of using different high‐order numerical boundary conditions for the implementation of the no‐penetration boundary condition for the density at no‐slip walls is considered. It is shown that the numerical solution is sensitive to the choice of difference relation for the density at boundaries and using an inappropriate difference relation leads to spurious numerical solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Hermite weighted essentially non‐oscillatory (HWENO) methods were introduced in the literature, in the context of Euler equations for gas dynamics, to obtain high‐order accuracy schemes characterized by high compactness (e.g. Qiu and Shu, J. Comput. Phys. 2003; 193 :115). For example, classical fifth‐order weighted essentially non‐oscillatory (WENO) reconstructions are based on a five‐cell stencil whereas the corresponding HWENO reconstructions are based on a narrower three‐cell stencil. The compactness of the schemes allows easier treatment of the boundary conditions and of the internal interfaces. To obtain this compactness in HWENO schemes both the conservative variables and their first derivatives are evolved in time, whereas in the original WENO schemes only the conservative variables are evolved. In this work, an HWENO method is applied for the first time to the shallow water equations (SWEs), including the source term due to the bottom slope, to obtain a fourth‐order accurate well‐balanced compact scheme. Time integration is performed by a strong stability preserving the Runge–Kutta method, which is a five‐step and fourth‐order accurate method. Besides the classical SWE, the non‐homogeneous equations describing the time and space evolution of the conservative variable derivatives are considered here. An original, well‐balanced treatment of the source term involved in such equations is developed and tested. Several standard one‐dimensional test cases are used to verify the high‐order accuracy, the C‐property and the good resolution properties of the model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we propose a model based on a new contravariant integral form of the fully nonlinear Boussinesq equations in order to simulate wave transformation phenomena, wave breaking, and nearshore currents in computational domains representing the complex morphology of real coastal regions. The aforementioned contravariant integral form, in which Christoffel symbols are absent, is characterized by the fact that the continuity equation does not include any dispersive term. A procedure developed in order to correct errors related to the difficulties of numerically satisfying the metric identities in the numerical integration of fully nonlinear Boussinesq equation on generalized boundary‐conforming grids is presented. The Boussinesq equation system is numerically solved by a hybrid finite volume–finite difference scheme. The proposed high‐order upwind weighted essentially non‐oscillatory finite volume scheme involves an exact Riemann solver and is based on a genuinely two‐dimensional reconstruction procedure, which uses a convex combination of biquadratic polynomials. The wave breaking is represented by discontinuities of the weak solution of the integral form of the nonlinear shallow water equations. The capacity of the proposed model to correctly represent wave propagation, wave breaking, and wave‐induced currents is verified against test cases present in the literature. The results obtained are compared with experimental measures, analytical solutions, or alternative numerical solutions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We study numerically a recently introduced formulation of incompressible Newtonian fluid equations in vorticity–helical density and velocity–Bernoulli pressure variables. Unlike most numerical methods based on vorticity equations, the current approach provides discrete solutions with mass conservation, divergence‐free vorticity, and accurate kinetic energy balance in a simple and natural way. The method is applied to compute buoyancy‐driven flows in a differentially heated cubic enclosure in the Boussinesq approximation for Ra ∈ {104,105,106}. The numerical solutions on a finer grid are of benchmark quality. The computed helical density allows quantification of the three‐dimensional nature of the flow. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
We reformulate the depth‐averaged non‐hydrostatic extension for shallow water equations to show equivalence with well‐known Boussinesq‐type equations. For this purpose, we introduce two scalars representing the vertical profile of the non‐hydrostatic pressure. A specific quadratic vertical profile yields equivalence to the Serre equations, for which only one scalar in the traditional equation system needs to be modified. Equivalence can also be demonstrated with other Boussinesq‐type equations from the literature when considering variable depth, but then the non‐hydrostatic extension involves mixed space–time derivatives. In case of constant bathymetries, the non‐hydrostatic extension is another way to circumvent mixed space–time derivatives arising in Boussinesq‐type equations. On the other hand, we show that there is no equivalence when using the traditionally assumed linear vertical pressure profile. Linear dispersion and asymptotic analysis as well as numerical test cases show the advantages of the quadratic compared with the linear vertical non‐hydrostatic pressure profile in the depth‐averaged non‐hydrostatic extension for shallow water equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
A hybrid scheme composed of finite‐volume and finite‐difference methods is introduced for the solution of the Boussinesq equations. While the finite‐volume method with a Riemann solver is applied to the conservative part of the equations, the higher‐order Boussinesq terms are discretized using the finite‐difference scheme. Fourth‐order accuracy in space for the finite‐volume solution is achieved using the MUSCL‐TVD scheme. Within this, four limiters have been tested, of which van‐Leer limiter is found to be the most suitable. The Adams–Basforth third‐order predictor and Adams–Moulton fourth‐order corrector methods are used to obtain fourth‐order accuracy in time. A recently introduced surface gradient technique is employed for the treatment of the bottom slope. A new model ‘HYWAVE’, based on this hybrid solution, has been applied to a number of wave propagation examples, most of which are taken from previous studies. Examples include sinusoidal waves and bi‐chromatic wave propagation in deep water, sinusoidal wave propagation in shallow water and sinusoidal wave propagation from deep to shallow water demonstrating the linear shoaling properties of the model. Finally, sinusoidal wave propagation over a bar is simulated. The results are in good agreement with the theoretical expectations and published experimental results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Boussinesq models describe the phase‐resolved hydrodynamics of unbroken waves and wave‐induced currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available in the literature, aiming to improve the representation of linear dispersion and non‐linearity. This paper describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sørensen (Coastal Eng. 1992; 15 :371–388) on Cartesian cut‐cell grids, the aim being to model non‐linear wave interaction with coastal structures. An explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme is used to solve the non‐linear and weakly dispersive Boussinesq‐type equations. Interface fluxes are evaluated using an HLLC approximate Riemann solver. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical solutions and experimental measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, we present a high‐order discontinuous Galerkin method (DGM) for simulating variable density flows at low Mach numbers. The corresponding low Mach number equations are an approximation of the compressible Navier–Stokes equations in the limit of zero Mach number. To the best of the authors'y knowledge, it is the first time that the DGM is applied to the low Mach number equations. The mixed‐order formulation is applied for spatial discretization. For steady cases, we apply the semi‐implicit method for pressure‐linked equation (SIMPLE) algorithm to solve the non‐linear system in a segregated manner. For unsteady cases, the solver is implicit in time using backward differentiation formulae, and the SIMPLE algorithm is applied to solve the non‐linear system in each time step. Numerical results for the following three test cases are shown: Couette flow with a vertical temperature gradient, natural convection in a square cavity, and unsteady natural convection in a tall cavity. Considering a fixed number of degrees of freedom, the results demonstrate the benefits of using higher approximation orders. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper describes a nonlinear, three‐dimensional spectral collocation method for the simulation of the incompressible Navier–Stokes equations under the Boussinesq approximation, motivated by geophysical and environmental flows. These flows are driven by the interaction of stratified fluid with topography, which this model accurately accounts for by using a mapped coordinate system. The spectral collocation method is implemented with both a Fourier trigonometric expansion and the Chebyshev polynomials, as appropriate for the domain boundary conditions. The coordinate mapping prohibits the use of existing, fast solution methods that rely on the separation of variables, so a preconditioner based on the approximate solution of a corresponding finite‐difference problem with geometric multigrid is used. The model is parallelized with the Message Passing Interface library, and it runs effectively on shared and distributed‐memory systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq binary fluid, which is heated and salted from below in the presence of Soret and DuFour effects is studied analytically using both linear and non-linear stability analyses. The linear analysis is based on the usual normal mode technique, while the non-linear analysis is based on a minimal representation of double Fourier series. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumbers for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effects of anisotropy parameter, solute Rayleigh number, and Soret and DuFour parameters on the stationary, oscillatory convection, and heat and mass transfer are shown graphically. Some known results are recovered as special cases of the present problem.  相似文献   

13.
A novel approach that embeds the Boussinesq‐type like equations into an implicit non‐hydrostatic model (NHM) is developed. Instead of using an integration approach, Boussinesq‐type like equations with a reference velocity under a virtual grid system are introduced to analytically obtain an analytical form of pressure distribution at the top layer. To determine the size of vertical layers in the model, a top‐layer control technique is proposed and the reference location is employed to optimize linear wave dispersion property. The efficiency and accuracy of this NHM with Boussinesq‐type like equations (NHM‐BTE) are critically examined through four free‐surface wave examples. Overall model results show that NHM‐BTE using only two vertical layers is capable of accurately simulating highly dispersive wave motion and wave transformation over irregular bathymetry. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The stability of mechanical equilibrium of a system of two horizontal immiscible-liquid layers with similar densities is studied. The problem is solved for a prescribed heat flux on the external boundaries. Within the framework of a generalized Boussinesq approximation, which takes the interface deformation correctly into account, the onset of convection caused by heating the system from above or below is considered. Two long-wave instability modes attributable to the presence of the deformable interface and the given heat flux on the external boundaries are detected. The system response to monotonic and oscillatory disturbances with finite wavelengths is investigated. A complete stability map is constructed.  相似文献   

15.
A two‐dimensional model for the simulation of solute transport by convection and diffusion into shallow water flow over variable bottom is presented. It is based on a finite volume method over triangular unstructured grids. A first‐order upwind technique, a second order in space and time and an extended first‐order method are applied to solve the non‐diffusive terms in both the flow and solute equations and a centred implicit discretization is applied to the diffusion terms. The stability constraints are studied and the form to avoid oscillatory results in the solute concentration in the presence of complex flow situations is detailed. Some comparisons are carried out in order to show the performance in terms of accuracy of the different options. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The nonlinear boundary-value problem of the axisymmetric buckling of a simply supported conical shell (dome) under a radial compressive load applied to the supported edge is formulated for a system of six first-order ordinary differential equations for independent fields of finite displacements and rotations. Multivalued solutions are obtained using the shooting method with specified accuracy. For various values of the loading parameter, bifurcation of the solutions of the problem is studied and a parametric branching diagram is constructed. The buckling modes are obtained for three branches of the solution. Curves of the buckling modes corresponding to three isolated branches of the solution are given.  相似文献   

17.
This paper investigates preconditioned iterative techniques for finite difference solutions of a high‐order Boussinesq method for modelling water waves in two horizontal dimensions. The Boussinesq method solves simultaneously for all three components of velocity at an arbitrary z‐level, removing any practical limitations based on the relative water depth. High‐order finite difference approximations are shown to be more efficient than low‐order approximations (for a given accuracy), despite the additional overhead. The resultant system of equations requires that a sparse, unsymmetric, and often ill‐conditioned matrix be solved at each stage evaluation within a simulation. Various preconditioning strategies are investigated, including full factorizations of the linearized matrix, ILU factorizations, a matrix‐free (Fourier space) method, and an approximate Schur complement approach. A detailed comparison of the methods is given for both rotational and irrotational formulations, and the strengths and limitations of each are discussed. Mesh‐independent convergence is demonstrated with many of the preconditioners for solutions of the irrotational formulation, and solutions using the Fourier space and approximate Schur complement preconditioners are shown to require an overall computational effort that scales linearly with problem size (for large problems). Calculations on a variable depth problem are also compared to experimental data, highlighting the accuracy of the model. Through combined physical and mathematical insight effective preconditioned iterative solutions are achieved for the full physical application range of the model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
A three‐dimensional baroclinic numerical model has been developed to compute water levels and water particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier–Stokes equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salinity transport models. In this component, the three‐dimensional convective diffusion equations are solved for each of the three quantities. In the turbulence model, a two‐equation k–ϵ formulation is solved to calculate the kinetic energy of the turbulence and its rate of dissipation, which provides the variable vertical turbulent eddy viscosity. Horizontal eddy viscosities can be simulated by the Smagorinsky algebraic sub grid scale turbulence model. The solution method is a composite finite difference–finite element method. In the horizontal plane, finite difference approximations, and in the vertical plane, finite element shape functions are used. The governing equations are solved implicitly in the Cartesian co‐ordinate system. The horizontal mesh sizes can be variable. To increase the vertical resolution, grid clustering can be applied. In the treatment of coastal land boundaries, the flooding and drying processes can be considered. The developed numerical model predictions are compared with the analytical solutions of the steady wind driven circulatory flow in a closed basin and of the uni‐nodal standing oscillation. Furthermore, model predictions are verified by the experiments performed on the wind driven turbulent flow of an homogeneous fluid and by the hydraulic model studies conducted on the forced flushing of marinas in enclosed seas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Combining mesh‐less finite difference method and least square approximation, a new numerical model is developed for water wave propagation model in two horizontal dimensions. In the numerical formulation of the method, the approximation of the unknown functions and their derivatives are constructed on a set of nodes in a local circular‐shaped region. The Boussinesq equations studied in this paper is a fully nonlinear and highly dispersive model, which is composed of the exact boundary conditions and the truncated series expansion solution of the Laplace equation. The resultant system involves a sparse, unsymmetrical matrix to be solved at each time step of the simulation. Matrix solutions are studied to reduce the computing resource requirements and improve the efficiency and accuracy. The convergence properties of the present numerical method are investigated. Preliminary verifications are given for nonlinear wave shoaling problems; the numerical results agree well with experimental data available in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
The baroclinic stability of a family of two time‐level, semi‐implicit schemes for the 3D hydrostatic, Boussinesq Navier–Stokes equations (i.e. the shallow water equations), which originate from the TRIM model of Casulli and Cheng (Int. J. Numer. Methods Fluids 1992; 15 :629–648), is examined in a simple 2D horizontal–vertical domain. It is demonstrated that existing mass‐conservative low‐dissipation semi‐implicit methods, which are unconditionally stable in the inviscid limit for barotropic flows, are unstable in the same limit for baroclinic flows. Such methods can be made baroclinically stable when the integrated continuity equation is discretized with a barotropically dissipative backwards Euler scheme. A general family of two‐step predictor‐corrector schemes is proposed that have better theoretical characteristics than existing single‐step schemes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号