首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The reaction of the chelating ligand tBuNTe(mu-NtBu)2TeNtBu (L) with LiI in THF yields [Li(THF)2L](mu 3-I)[LiI(L)] (3). This complex is also formed by the attempted oxidation of [Li2Te(NtBu)3]2 with I2. An X-ray analysis of 3 reveals that the tellurium diimide dimer acts as a chelating ligand toward (a) [Li(THF)2]+ cations and (b) a molecule of LiI. An extended structure is formed via weak Te...I interactions [3.8296(7)-3.9632(7) A] involving both mu 3-iodide counterions and the iodine atoms of the coordinated LiI molecules. Crystal data: 3, triclinic, space group P1, a = 10.1233(9) A, b = 15.7234(14) A, c = 18.8962(17) A, alpha = 86.1567(16) degrees, beta = 84.3266(16) degrees, gamma = 82.9461(16) degrees, V = 2965.8(5) A3, Z = 2. The oxidation by air of [Li2Te(NtBu)3]2 in toluene produces the radical (Li3[Te(NtBu)3]2), which exhibits an ESR spectrum consisting of a septet of decuplets (g = 2.00506, a(14N) = 5.26 G, a(7Li) = 0.69 G). The complexes [(THF)3Li3(mu 3-X)(Te(NtBu)3)] (4a, X = Cl; 4b, X = Br; 4c, X = I) are obtained from the reaction of [Li2Te(NtBu)3]2 with lithium halides in THF. The iodide complex, 4c, has a highly distorted, cubic structure comprised of the pyramidal [Te(NtBu)3]2- dianion which is linked through three [Li(THF)]+ cations to I- Crystal data: 4c, triclinic, space group P1, a = 12.611(8) A, b = 16.295(6) A, c = 10.180(3) A, alpha = 98.35(3) degrees, beta = 107.37(4) degrees, gamma = 108.26(4) degrees, V = 1829(2) A3, Z = 2.  相似文献   

2.
The reaction of SeCl2 with tert-butylamine in various molar ratios in THF at -78 degrees C has been investigated by 77Se NMR spectroscopy. In addition to the known Se-N heterocycles Se6(NtBu)2 (1) and Se9(NtBu)6 (2), the acyclic imidoselenium(II) dichlorides ClSe[N(tBu)Se]nCl (4, n = 1; 5, n = 2) and two new cyclic selenium imides [Se3(NtBu)2]n (3, n = 1 or 2) and Se3(NtBu)3 (6) have been isolated and identified. An X-ray analysis shows that 6 is a six-membered ring in a chair conformation with magnitude of d(Se-N) = 1.833 A. Crystal data: 6, trigonal, P3c1, a = 9.8660(3) A, c = 20.8427(7) A, V = 1757.0(1) A3, Z = 6. The 1H, 13C, and 77Se NMR data for 1-6 are reported, and some reassignments of earlier literature data for 1-3 (n = 1) are made. The decomposition of tBuN=Se=NtBu at 20 degrees C in toluene was monitored by 77Se NMR. The major products are 6 and 3. The Se(IV)-N systems tBuNSe(mu-NtBu)2E (7, E = SO2; 8, E = SeO) were prepared by the reaction of a mixture of SeCl4 and excess tBuNH2 with SO2Cl2 or SeOCl2, respectively. Compound 8 is also generated by the cycloaddition reaction of tBuNSeNtBu with tBuNSeO. Both 7 and 8 consist of slightly puckered four-membered rings. The mean terminal and bridging Se-N distances in 7 are 1.665(2) and 1.948(2) A, respectively. The corresponding values for 8 are 1.687(4) and 1.900(4) A, and d(Se=O) = 1.628(4) A. Crystal data: 7, monoclinic, P2(1)/c, a = 18.669(4) A, b = 12.329(2) A, c = 16.463(3) A, beta = 115.56(3) degrees, V = 3418.4(11) A3, Z = 4; 8, triclinic, P1, a = 6.372(1) A, b = 9.926(2) A, c = 14.034(3) A, alpha = 99.320(3) A, beta = 95.764(3) A, gamma = 103.876(3) A, V = 841.3(3) A3, Z = 2.  相似文献   

3.
The dimeric iron carbonyl [CpFe(CO)(2)](2) and the iodosilanes tBu(2)RSiI were obtained from the reaction of [CpFe(CO)(2)]I with the silanides Na[SiRtBu(2)] (R = Me, tBu) in THF. By the reactions of [CpFe(CO)(2)]I and Na[SiRtBu(2)] (R = Me, tBu) the disilanes tBu(2)RSiSiRtBu(2) (R = Me, tBu) were additionally formed using more than one equivalent of the silanide. In this context it should be noted that reduction of [CpFe(CO)(2)](2) with Na[SitBu(3)] gives the disilanes tBu(3)SiSitBu(3) along with the sodium ferrate [(Na(18-crown-6))(2)Cp][CpFe(CO)(2)]. The potassium analogue [(K(18-crown-6))(2)Cp][CpFe(CO)(2)] (orthorhombic, space group Pmc2(1)), however, could be isolated as a minor product from the reaction of [CpFe(CO)(2)]I with [K(18-crown-6)][PtBu(2)BH(3)]. The reaction of [CpFe(CO)(2)](2) with the potassium benzophenone ketyl radical and subsequent treatment with 18-crown-6 yielded the ferrate [K(18-crown-6)][CpFe(CO)(2)] in THF at room temperature. The crown ether complex [K(18-crown-6)][CpFe(CO)(2)] was analyzed using X-ray crystallography (orthorhombic, space group Pna2(1)) and its thermal behaviour was investigated.  相似文献   

4.
The neutron and X-ray structures of [Na(15-crown-5)][BH(4)] and [Na(15-crown-5)][AlH(4)], respectively, are reported, along with a topological analysis of their DFT-computed charge densities that explores the bonding between the anionic complex hydride [EH(4)](-) (E = B, Al) and the counterion [Na(15-crown-5)](+). In each case, the interaction is weak and mainly electrostatic in nature; however, notable differences are observed in the manner in which [BH(4)](-) and [AlH(4)](-) bind to the metal, which explains their different coordination modes. A range of unconventional E-H···H-C contacts is revealed to play an important role in the overall bonding and crystal packing of both complexes. These interactions can be classified as weak dihydrogen bonds based on the atoms in molecules approach.  相似文献   

5.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

6.
A novel Pd(II) Benzo-15-crown-5 complex [Na(B15C5)]2[Pd(SCN)4] has been isolated and characterized by IR and X-ray diffraction analysis.The crystal structure belongs to monoclinic,space group P21/n with cell dimensions,a=1.0164(6),b=1.3743(3),c=1.4987(7) nm,b=95.248(6)o ,V=2.0847nm3,Z=2,F(000)=944,R=0.053,Rw=0.072.The compound consists of two [Na(B15C5)]+ complex cations and a [Pd(SCN)4]2- complex anion.Each sodium ion is coordinated by five crown ether oxygen atoms and one N atom from the SCN group of [Pd(SCN)4]2- to form stable neutral complex.  相似文献   

7.
Halogeno-Nitrosyl Complexes of Molybdenum and Tungsten. Crystal Structures of [Na2(15-Crown-5)2(CH3CN)][MoCl4(NO)2] and [Na(15-Crown-5)]2[MoF4Cl(NO)] MoCl2(NO)2 and WCl2(NO)2, respectively, react with excess sodium fluoride in acetonitrile at room temperature and in the presence of 15-crown-5 to give crystalline mixtures, which consist of the title compounds, respectively of [Na(15-crown-5)]2[WCl4(NO)2] and [Na(15-crown-5)]2[WF4Cl(NO)], and which can be separated by selection. The complexes are characterized by their i.r. spectra, the molybdenum compounds additionally by crystal structure determinations. [Na2(15-crown-5)2(CH3CN)][MoCl4(NO)2]: Space group P21, Z = 2, 5415 independent unique reflexions, R = 0.039. Lattice dimensions at ?10°C: a = 984.3, b = 1231.1, c = 1483.0 pm, β = 105.67°. The compound consists of cations [Ne(l5-crown-5)(CH3CN)]+, in which the sodium ion is surrounded by the five O-atoms of the crown ether and by the N-atom of the acetonitrile molecule, as well as of anions, which form an ion pair {Na(15-crown-5)[MoCl4(NO)2]}?. In the in pairs the sodium ion is coordinated by the five oxygen atoms of the crown ether and by two chlorine atoms of the [MoCI4(NO)2]2? unit. The nitrosyl ligands take the cis-position a t the molybdenum atom which is in a distorted octahedrally fashion. [Na(15-crown-5)]2[MoF4Cl(NO)]. Space group C2/c, Z = 4, 1933 independent unique reflexions, R = 0.078. Lattice dimensions at ?7O°C: D : 1.585.8, b = 1171.5, c = 1771.5 pm, β = 114.91°. The compound forms an ion triple, in which the sodium ions are linked to five oxygen atoms each of the crown ether molecules, and to two F-atoms of the [MoF4Cl(NO)]2? unit. The F-atom which is arranged in trans-position to the nitrosyl ligand coordinates with both sodium ions; thus an unusual T-shaped arrangement results for this F-atom. The sole terminal F-Atom and the Cl-atom are disordered in two positions.  相似文献   

8.
The reactions of MCl3 with Li2[PhB(NtBu)2] in 1:1, 1:1.5, and 1:2 molar ratios in diethyl ether produced the monoboraamidinates ClM[PhB(NtBu)2] (1a, M = As; 1b, M = Sb; 1c, M = Bi), the novel 2:3 boraamidinate complexes [PhB(NtBu)2]M-micro-N(tBu)B(Ph)N(tBu)M[PhB(NtBu)2] (2b, M = Sb; 2c, M = Bi), and the bisboraamidinates LiM[PhB(NtBu)2]2 (3a, 3a.OEt2, M = As; 3b, M = Sb; 3c.OEt2, M = Bi), respectively. The 2:3 complexes 2b and 2c were also observed in the reactions carried out in a 1:2 molar ratio at room temperature. All complexes have been characterized by multinuclear NMR spectroscopy (1H, 7Li, 11B, and 13C) and by single-crystal X-ray structural determinations. The molecular units of the mono-boraamidinates 1a-c are isostructural, but their crystal packing is distinct as a result of stronger intermolecular close contacts going from 1a to 1c. In the novel 2:3 bam complexes 2b and 2c, each metal center is N,N'-chelated by a bam ligand and these two [M(bam)]+ units are bridged by the third [bam]2- ligand. The structures of the unsolvated bis-boraaminidate complexes 3a and 3b consist of [Li(bam)]- and [M(bam)]+ monomeric units linked by Li-N and M-N bonds to give a tricyclic structure. Solvation of the Li+ ion by diethyl ether results in a bicyclic structure composed of four-membered BN2As and six-membered BN3AsLi rings in 3a.OEt2. In contrast, the analogous bismuth complex 3c.OEt2 exhibits a tetracyclic structure. Variable-temperature NMR studies reveal that the nature of the fluxional behavior of 3a-c in solution is dependent on the group 15 center.  相似文献   

9.
The salt [K(18-crown-6)][Mn(H2O)2Cr(ox)3.0.5(18-crown-6) (1) has been prepared and structurally and magnetically characterized. It crystallizes in the P2(1)/c space group [a = 21.011(2) A, b = 11.265(2) A, c = 15.748(3) A, beta = 105.952(6) degrees , V = 3584(1) A3, and Z = 4] and contains [Mn(H2O)2Cr(ox)3]infinity chains connected through hydrogen bonding to form 2D anionic networks. The magnetic exchange is ferromagnetic [J = +2.23(2) cm(-1)] in the chain and also in between chains, reaching bulk ferromagnetic ordering below 3.5 K.  相似文献   

10.
Addition of 15-crown-5 to [GdF(AsF6)2], both dissolved in liquid SO2, and crystallisation at -30 degrees C has led to the isolation of the tetranuclear ionic complex [Gd4F7(15-crown-5)4][AsF6]5.6 SO2 which is stable up to--10 degrees C where SO2 loss leads to loss of crystallinity.  相似文献   

11.
[Na(15-crown-5)][ReFCl3(NO)(CH3CN)] Synthesis, IR Spectrum, and Crystal Structure The title compound has been prepared by the reaction of [ReCl3(NO)2(CH3CN)] with the equivalent amount of sodium fluoride in the presence of 15-crown-5 in boiling acetonitrile, forming blue crystals. They were characterized by IR spectroscopy and by an X-ray structure determination. Space group P21/n, Z = 4,2117 observed independent reflections, R = 0.037, wR = 0.029. Lattice dimensions at 20°C: a = 834.0(2), b = 1600.0(3), c = 1670.0(3) pm; β = 104.19(3)°. The compound forms an ion pair via one Na F contact of 234.4 pm and one Na Cl contact of 293.4 pm; the nitrosyl ligand ist in trans-position to the F atom of the anion [ReFCl3(NO)(CH3CN)].  相似文献   

12.
The treatment of SiCl4 with 4 equiv of Li2(Nnaph) (naph = 1-naphthyl) in diethyl ether gives (Et2O.Li)4[Si(Nnaph)4] (4), which, upon reaction with excess tBuNH3Cl or MeO3SCF3, generates Si[N(H)naph]4 (5) or Si[N(Me)naph]4 (6), respectively. The centrosymmetric dimer (THF.Li3[Si(NiPr)3(NHiPr)])2 (7), formed via trilithiation of Si[N(H)iPr]4 with n-butyllithium, consists of a bis-THF-solvated Li6(NiPr)6 cyclic ladder bicapped by two SiN(H)iPr units. Crystal data for 7: C32H74Li6N8O2Si2, monoclinic, P2(1)/n, a = 10.661(7) A, b = 16.964(5) A, c = 12.405(4) A, beta = 93.22(4) degrees, V = 2239.9(15) A3, and Z = 2.  相似文献   

13.
Fortier S  Wu G  Hayton TW 《Inorganic chemistry》2008,47(11):4752-4761
Addition of 6 equiv of LiOtBu to a THF/Et2O solution of UCl4 at -25 degrees C generates [Li(THF)]2[U(OtBu)6] (1) in 61% yield. 1 is soluble in polar organic solvents and is stable for several days in THF. However, 1 slowly decomposes in benzene or hexanes, forming the dinuclear uranium(IV) species [Li(THF)][U2(OtBu)9] (2) as one of the decomposition products. Alternatively, 2 can be directly prepared in moderate yield by the addition of 4.5 equiv LiOtBu to UCl4 in hexanes/THF at room temperature. The decomposition of 1 has been studied by 1H and 7Li{1H} NMR spectroscopies to elucidate the nature of this transformation. Oxidation of 1 occurs readily in the presence of 0.5 or 1 equiv of I2 to give [Li(Et2O)][U(OtBu)6] (3) and U(OtBu)6 (4), respectively, in good yields. Alternately, 3 can be generated by comproportionation of 1 and 4. 1-4 have been fully characterized, including analysis by X-ray crystallography. In the solid-state these complexes possess large U-O-Cq bond angles, suggestive of a significant U-O pi interaction. In addition, we have studied the redox properties of 4 by cyclic voltammetry.  相似文献   

14.
<正> The complex [Na(15-crown-5)] [Cd(SCN)3] (15-crown-5 = C10H20 O5) crysializes in monoclinic space group P21/c with a=10. 219(2) ,b= 10. 575(2) ,c= 20. 572(2) A ,β=98. 45(1)°,V= 2198. 7A3,Mr=529. 89,Z = 4,Dx=1. 600g/cm3,F (000) -1052,μ= 15. 708cm-1. The structure was solved by direct methods with the final R=0. 064. Results of structure analysis indicate that the Na ion is bonded by 15-crown-5 to form a complex cation and the Cd(Ⅱ) is bonded by six SCN ion to form an anion chain with a distorted octahedral coordination.  相似文献   

15.
A differential pulse voltammetric study of complexes of Cd(II) and Pb(II) with crown ethers is reported. Measured log K(1) values for Cd(II) with 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane), 15-crown-5 (1,4,7,10,13-pentaoxacyclopentadecane), and 12-crown-4 (1,4,7,10-tetraoxacyclododecane) are respectively 2.53 (+/-0.06), 1.97 (+/-0.07), and 1.72 (+/-0.08) and for Pb(II) with 18-crown-6 is 4.17 (+/-0.03), all at 25 degrees C in 0.1 M LiNO(3). Cd(II) is smaller than is usually associated with strong bonding with crown ethers. The high log K(1) values for Cd(2+) with crown ethers found here are discussed in terms of distortion of Cd(II) by relativistic effects. The resulting plasticity of the coordination geometry of the Cd(II) ion allows it to meet the metal ion size requirements of all the crown ethers, allowing high log K(1) values to occur. Crystal structures for [Cd(bz-18-crown-6)(SCN)(2)] (1) (bz-18-crown-6 = benzo-1,4,7,10,13,16-hexaoxacyclooctadecane) and [K(18-crown-6)][Cd(SCN)(3)] (2) are reported. 1 was triclinic, space group P1, a = 8.5413(2), b = 10.0389(2), and c = 13.4644(2) A, alpha = 94.424(1), beta = 102.286(1), and gamma = 93.236(1) degrees, Z = 2, and final R = 0.023. 2 was orthorhombic, space group Cmc2(1), a = 14.7309(3), b = 15.1647(3), and c = 10.6154(2) A, Z = 4, and final R = 0.020. In 1, the Cd occupies the cavity of the bz-18-crown-6 with long average Cd-O bond lengths of 2.65 A and is N-bonded to the thiocyanates with short average Cd-N bonds of 2.12 A. In [Cd(bz-18-crown-6)(SCN)(2)], the linear coordination involving the Cd and the two N-bonded thiocyanate groups in 1 is discussed in terms of the role of relativistic effects in the tendency to linear coordination geometry in group 12 metal ions. In 2 Cd forms a polymeric structure involving thiocyanate bridges between Cd atoms and K(+) occupies the cavity of the crown ether. 2 highlights the fact that cadmium is almost never S-bonded to thiocyanate except in bridging thiocyanates.  相似文献   

16.
18-冠-6与Na2[M(mnt)2](M=Cu,Ni)配合物的合成与结构   总被引:6,自引:0,他引:6  
研究了18-冠-6分别与Na2[M(mnt)2][M=Cu,Ni;mnt=丁二腈烯二硫醇阴离子,C2S2(CN)^2^-~2]的反应,得到的配合物{[Na(18-C-6)][Na(18-C-6)(H2O)]}[Cu(mnt)2](1),[Na(18-C-6)(H2O)]2[Ni(mnt)2].(18-C-6)(2)通过元素分析、红外光谱、X射线单晶衍射进行了表征。两个配合物均为三斜晶系,空间群P1。1的晶体学结构数据:a=1.22697(19)nm,b=1.22780(19)nm,c=1.5665(3)nm,α=95.083(3)°,β=101.534(3)°,Υ=91.007(3)°,V=2.3016(6)nm^3,Z=2,Dcalcd=1.350g/cm^3,F(000)=976,R1=0.0726,wR2=0.1843.2的晶体学结构数据:a=1.11620(17)nm,b=1.22054(18)nm,c=1.27939(18)nm,α=111.647(2)°,β=29.792(3)°,Υ=103.201(2)°,V=2.5461(4)nm^3,Z=1,Dcalcd=1.304g/cm^3,F(000)=642,R1=0.0459,wR2=0.1003.1中的[Cu(mnt)2]^2^-通过mnt的氮原子与[Na(18-C-6)]^+中的钠原子成键,形成了一维链状结构;[Na(18-C-6)(H2O)]^+只起平衡电荷的作用。2中的[Ni(mnt)2]^2^-也通过配体的mnt氮原子与两个[Na(18-C-6)(H2O)]^+中的钠原子成键,形成稳定的中性配合物。  相似文献   

17.
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a.  相似文献   

18.
The Crystal Structures of {Li3(12-crown-4)2[HC(CN)2]3}, {Na(15-crown-5)[HC(CN)2]}, and {NaN(nBu)4[HC(CN)2]2 · THF} The preparation and the crystal structures of the title compounds 1 — 3 are described. 1 forms a polymeric chain structure, in which one of the lithium ions is linked by Li…NCC(H)CN… bridges. The remaining lithium ions form (12-crown-4)Li[NCC(H)CN] units, which are coordinated by one of the nitrogen atoms of the dicyanomethanide ions with the lithium ions of the chain. 2 forms an ion pair, in which the sodium ion is coordinated by the five oxygen atoms of the crown ether molecule and by one nitrogen atom of the dicyanomethanide ion. 3 has a threedimensional network, in which the sodium ions are coordinated in a distorted tetrahedral manner by the nitrogen atoms of the dicyanomethanide ions. In the cavities of the network the tetrabutylammonium ions and the THF molecules are found.  相似文献   

19.
A series of tetracyanoborate salts M[B(CN)4] with the singly charged cations of Li+, Na+, Rb+, Cs+, [NH4]+, Tl+, and Cu+ as well as the THF solvate tetracyanoborates Na[B(CN)4] x THF and [NH4][B(CN)4] x THF were synthesized and their X-ray structures, vibrational spectra, solubilities in water, and thermal stabilities determined and compared with already known M[B(CN)4] salts. Crystallographic data for these compounds are as follows: Na[B(CN)4], cubic, Fd3m, a = 11.680(1) A, Z= 8; Li[B(CN)4], cubic, P43m, a = 5.4815(1) A, Z= 1; Cu[B(CN)4], cubic, P43m, a = 5.4314(7) A, Z= 1; Rb[B(CN)4], tetragonal, /4(1)/a, a = 7.1354(2) A, c= 14.8197(6) A, Z= 4; Cs[B(CN)4], tetragonal, /4(1)/a, a = 7.300(2) A, c = 15.340(5) A, Z= 4; [NH4][B(CN)4], tetragonal, /4(1)/a, a = 7.132(1) A, c = 14.745(4) A, Z= 4; Tl[B(CN)4], tetragonal, /4(1)/a, a = 7.0655(2) A, c = 14.6791(4) A, Z= 4; Na[B(CN)4] x THF, orthorhombic, Pnma, a = 13.908(3) A, b = 9.288(1) A, c = 8.738(1) A, Z= 4; [NH4][B(CN)4] x THF, orthorhombic, Pnma, a = 8.831(1) A, b = 9.366(2) A, c = 15.061(3) A, Z= 4. The cubic Li+, Na+, and Cu+ salts crystallize in a structure consisting of two interpenetrating independent tetrahedral networks of M cations and [B(CN)4]- ions. The compounds with the larger countercations (Rb+, Cs+, Tl+, and [NH4]+) crystallize as tetragonal, also with a network arrangement. The sodium and ammonium salts with the cocrystallized THF molecules are both orthorhombic but are not isostructural. In the vibrational spectra the two CN stretching modes A1 and T2 coincide in general and the band positions are a measure for the strength of the interionic interaction. An interesting feature in the Raman spectrum of the copper salt is the first appearance of two CN stretching modes.  相似文献   

20.
Five-coordinate and six-coordinate 2-methyl-2-propanethiolato complexes of zirconium, [Li(DME)(3)][Zr(SCMe(3))(5)] (1) and [(THF)Li](2)Zr(SCMe(3))(6) (2), were obtained from the ZrCl(4)/LiSCMe(3) reaction system. The control of the Zr coordination number, by the ether ligands, THF or DME, bound to Li, is demonstrated by the conversion of 2 into 1 upon dissolution in DME. 1 and 2 were crystallographically characterized. The structures are extensively disordered. Crystal data follow: 1, hexagonal P6(3)/m, a = b = 12.496(3) ?, c = 17.561(9) ?, Z = 2, V = 2375(1) ?(3), R = 5.0%, R(w) = 6.8%; 2, trigonal R32, a = b = 11.813(3) ?, c = 28.37(1) ?, Z = 3, V = 3428(1) ?(3), R = 5.2%, R(w) = 6.4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号