首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental measurement data on the fine structure of beta-decay strength function Sβ(E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in Sβ(E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in Sβ(E) are split into two components from the axial nuclear deformation. In this report, the fine structure of Sβ(E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in Sβ(E) of β+/EC-decay), and of protons against neutron holes (peaks in Sβ(E) of β-decay) is discussed.  相似文献   

2.
The time-of-flight technique is used to measure the ratios R(E, E n )=N(E, E n )/NCf(E) of the normalized (to unity) spectra N(E, E n ) of neutrons accompanying the neutron-induced fission of 238U at primary-neutron energies of E n =6.0 and 7.0 MeV to the spectrum NCf(E) neutrons from the spontaneous fission of 252Cf. These experimental data and the results of their analysis are discussed together with data that were previously obtained for the neutron-induced fission of 238U at the primary energies of E n =2.9, 5.0, 13.2, 14.7, 16.0, and 17.7 MeV.  相似文献   

3.
A finite system of fermions with pairing interaction is treated by the Green function method. It is shown that a finite number of “bound pairs” must be assumed to get the correct properties of the system in that region of the interaction strength where the BCS-solution is incorrect. Also the difference betweenE 0(N+2)?E 0(N) andE 0(N)?E 0(N?2),E 0(N) being the ground state energy of theN-particle system, has to be considered. The formulae derived give an interpolation between the region where perturbation theory applies and the region of validity of the BCS-equations.  相似文献   

4.
Brolin-Lyubich measure λ R of a rational endomorphism \({R:{\hat{\mathbb {C}}}\to {\hat{\mathbb {C}}}}\) with deg R ≥ 2 is the unique invariant measure of maximal entropy \({h_{\lambda_R}=h_{{\rm top}}(R)=\log d}\) . Its support is the Julia set J(R). We demonstrate that λ R is always computable by an algorithm which has access to coefficients of R, even when J(R) is not computable. In the case when R is a polynomial, the Brolin-Lyubich measure coincides with the harmonic measure of the basin of infinity. We find a sufficient condition for computability of the harmonic measure of a domain, which holds for the basin of infinity of a polynomial mapping, and show that computability may fail for a general domain.  相似文献   

5.
Let H(?)=?? 2d2/dx 2+V(x) be a Schrödinger operator on the real line, W(x) be a bounded observable depending only on the coordinate and k be a fixed integer. Suppose that an energy level E intersects the potential V(x) in exactly two turning points and lies below V =lim?inf?|x|→∞ V(x). We consider the semiclassical limit n→∞, ?=? n →0 and E n =E where E n is the nth eigenenergy of H(?). An asymptotic formula for 〈n|W(x)|n+k〉, the non-diagonal matrix elements of W(x) in the eigenbasis of H(?), has been known in the theoretical physics for a long time. Here it is proved in a mathematically rigorous manner.  相似文献   

6.
It is well known that the usual Kramers–Kronig relations for the relative permeability function μ(ω) are not compatible with diamagnetism (μ(0) < 1) and a positive imaginary part (Im μ(ω) > 0 for ω > 0). We demonstrate that a certain physical meaning can be attributed to μ for all frequencies, and that in the presence of spatial dispersion, μ does not necessarily tend to 1 for high frequencies ω and fixed wavenumber k. Taking the asymptotic behavior into account, diamagnetism can be compatible with Kramers–Kronig relations even if the imaginary part of the permeability is positive. We provide several examples of diamagnetic media and metamaterials for which μ(ω, k) ?  1 as ω.  相似文献   

7.
Motivated by IF-probability theory (intuitionistic fuzzy), we study n-component probability domains in which each event represents a body of competing components and the range of a state represents a simplex S n of n-tuples of possible rewards–the sum of the rewards is a number from [0,1]. For n=1 we get fuzzy events, for example a bold algebra, and the corresponding fuzzy probability theory can be developed within the category ID of D-posets (equivalently effect algebras) of fuzzy sets and sequentially continuous D-homomorphisms. For n=2 we get IF-events, i.e., pairs (μ,ν) of fuzzy sets μ,ν∈[0,1] X such that μ(x)+ν(x)≤1 for all xX, but we order our pairs (events) coordinatewise. Hence the structure of IF-events (where (μ 1,ν 1)≤(μ 2,ν 2) whenever μ 1μ 2 and ν 2ν 1) is different and, consequently, the resulting IF-probability theory models a different principle. The category ID is cogenerated by I=[0,1] (objects of ID are subobjects of powers I X ), has nice properties and basic probabilistic notions and constructions are categorical. For example, states are morphisms. We introduce the category S n D cogenerated by \(S_{n}=\{(x_{1},x_{2},\ldots ,x_{n})\in I^{n};\:\sum_{i=1}^{n}x_{i}\leq 1\}\) carrying the coordinatewise partial order, difference, and sequential convergence and we show how basic probability notions can be defined within S n D.  相似文献   

8.
Corrections of the α5 and α6 orders to the energy spectrum of the hyperfine splitting of the 1S and 2S levels of the muonic helium ion are calculated with the inclusion of the electron vacuum polarization effects, nuclear-structure corrections, and recoil effects. The values ΔE hfs(1S) = ?1334.56 meV and ΔE hfs(2S) = ?166.62 meV obtained for hyperfine splitting values can be considered as reliable estimates for comparison with experimental data. The hyperfine structure interval Δ12 = 8ΔE hfs(2S) ? ΔE hfs(1S) = 1.64 meV can be used to verify QED predictions.  相似文献   

9.
Corrections of order α 5 and α 6 are calculated for muonic hydrogen in the fine-structure interval ΔE fs = E(2P 3/2) − E(2P 1/2) and in the hyperfine structure of the 2P 1/2-and 2P 3/2-wave energy levels. The resulting values of ΔE fs = 8352.08 μeV, Δ hfs(2P 1/2) = 7819.80 μeV, and Δ hfs(2P 3/2) = 3248.03 μeV provide reliable guidelines in performing a comparison with relevant experimental data and in more precisely extracting the experimental value of the (2P–2S) Lamb shift in the muonic-hydrogen atom. Original Russian Text ? A.P. Martynenko, 2008, published in Yadernaya Fizika, 2008, Vol. 71, No. 1, pp. 126–136.  相似文献   

10.
A method is proposed for calculating the energy dependence of the fusion cross section (in general, the sum of the cross sections for complete and incomplete fusion, quasifission, and reactions of deep-inelastic scattering) σ F (E) and the total cross section for peripheral (or quasielastic) reactions, σ D (E). The method is based on an analysis of a limited set of angular distributions for the elastic scattering in a given pair of nuclei. The predictive power of the method is illustrated by considering the 16O + 208Pb, 16O + 40Ca, and 16O + 28Si systems. For each of these systems, the calculations were performed at energies in the range extending from subbarrier values to those exceeding the barrier height substantially. The results of the calculations are found to be in good agreement with relevant experimental data, whereby the reliability of the method is confirmed. By virtue of this, it is proposed to employ the method to study the energy dependences σ F (E) and σ D (E) in collisions involving unstable nuclei, for which it is difficult to determine experimentally the above dependences because of a low intensity of secondary beams.  相似文献   

11.
First, we study several information theories based on quantum computing in a desirable noiseless situation. (1) We present quantum key distribution based on Deutsch’s algorithm using an entangled state. (2) We discuss the fact that the Bernstein-Vazirani algorithm can be used for quantum communication including an error correction. Finally, we discuss the main result. We study the Bernstein-Vazirani algorithm in a noisy environment. The original algorithm determines a noiseless function. Here we consider the case that the function has an environmental noise. We introduce a noise term into the function f(x). So we have another noisy function g(x). The relation between them is g(x) = f(x) ± O(??). Here O(??) ? 1 is the noise term. The goal is to determine the noisy function g(x) with a success probability. The algorithm overcomes classical counterpart by a factor of N in a noisy environment.  相似文献   

12.
The E(5) symmetry describes nuclei related to the U(5)-SO(6) phase transition, while the X(5) symmetry is related to the U(5)-SU(3) phase transition. First, a chain of potentials interpolating between the U(5) symmetry of the five-dimensional harmonic oscillator and the E(5) symmetry is considered. Parameter-independent predictions for the spectra and B(E2) values of nuclei with R4 = E(4)/E(2) ratios of 2.093, 2.135, and 2.157 (compared to the ratio of 2.000 of the U(5) case and the ratio of 2.199 of the E(5) case) are derived numerically and compared to existing experimental data, suggesting several new experiments. TheX(5) symmetry describes nuclei characterized byR4=2.904.Using the same separation of variables of the original Bohr Hamiltonian as in X(5), an exactly soluble model with R4=2.646 is constructed and its parameter-independent predictions are compared to existing spectra and B(E2) values. In addition, a chain of potentials interpolating between this new model and the X(5) symmetry is considered. Parameter-independent predictions for the spectra and B(E2) values of nuclei with R4 ratios of 2.769, 2.824, and 2.852 are derived numerically and compared to existing experimental data, suggesting several new experiments.  相似文献   

13.
We analyze systematically the effective order parameters in nuclear shape phase transition both in experiments and in the interacting boson model. We find that energy ratios and B(E2) ratios can distinguish the first- from the second-order phase transition in theory above a certain boson number N (about 50), but in experiments, only those quantities, such as E(L 1 +)/E(02 +) and B(E2; (L+2)1L 1)/B(E2; 21 → 01), etc., of which the monotonous transitional behavior in the second-order phase transition is broken in the first-order phase transition independent of N, are qualified as the effective order parameters. By implementing the originally proposed effective order parameters and the new ones, we find that the isotones with neutron number N n = 62 are a trajectory of the secondorder phase transition. In addition, we predict that the transitional behavior of isomer shifts of Xe, Ba isotopes and N n = 62 isotones is approximately monotonous due to the finiteness of nuclear system.  相似文献   

14.
Lattice vibrations of the wurtzite-type AIN have been studied by Raman spectroscopy under high-pressure up to the phase transition to the rock salt structure at 20 GPa. Five fundamental bands E 2 2 , A1(TO), E1(TO), A1(LO), and E1(LO) have a strong, positive pressure shift, whereas the shift of the low-frequency E 2 1 band is weakly positive. We have found that the bond-bending mode has a positive mode Grüneisen parameter γi = 0.04, which is qualitatively consistent with the recently reported value γi = 0.12 [21]. Thus, we confirm that AIN remains stable with respect to the bond-bending mode, while in most tetrahedral semiconductors, bond-bending modes soften on compression. Experimental results are compared with the first-principle calculations.  相似文献   

15.
We have studied spin-resolved correlations in the warm-dense homogeneous electron gas by determining the linear density and spin-density response functions, within the dynamical self-consistent mean-field theory of Singwi et al. The calculated spin-resolved pair-correlation function g σ σ(r) is compared with the recent restricted path-integral Monte Carlo (RPIMC) simulations due to Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)], while interaction energy E int and exchange-correlation free energy F xc with the RPIMC and very recent ab initio quantum Monte Carlo (QMC) simulations by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. g ↑↓(r) is found to be in good agreement with the RPIMC data, while a mismatch is seen in g ↑↑(r) at small r where it becomes somewhat negative. As an interesting result, it is deduced that a non-monotonic T-dependence of g(0) is driven primarily by g ↑↓(0). Our results of E int and F xc exhibit an excellent agreement with the QMC study due to Dornheim et al., which deals with the finite-size correction quite accurately. We observe, however, a visible deviation of E int from the RPIMC data for high densities (~8% at r s = 1). Further, we have extended our study to the fully spin-polarized phase. Again, with the exception of high density region, we find a good agreement of E int with the RPIMC data. This points to the need of settling the problem of finite-size correction in the spin-polarized phase also. Interestingly, we also find that the thermal effects tend to oppose spatial localization as well as spin polarization of electrons.  相似文献   

16.
We discuss the Josephson effect for pairing states which break crystal symmetries in addition to gauge symmetry. We consider theE 1g andE 2u models for the low-temperature phase ofUPt 3, with order parameters Δ(E 1g )~p z (p x +ip y ) and Δ(E 2u )~p z (p x +ip y )2. We report calculations of Josephson critical currents, taking into account the effects of depairing at the interface. For singlet-triplet junctions the critical current is non-zero only for spin-orbit, spin-flip tunneling, and is found to be much smaller than the Ambegaokar-Baratoff value even when the spin-orbit tunneling amplitude is comparable to the spin-independent amplitude.  相似文献   

17.
One-dimensional localized waves, which can be considered as soliton elementary excitations, exist in a magnet with a unit spin and comparable bilinear and biquadratic spin-spin interactions, with which the state of spin nematic is realized. These excitations are characterized by a certain momentum P and a certain energy E. The structure of these solitons has been found, and the E = E(P) dependence, which plays the role of the dispersion law of these soliton elementary excitations, has been constructed. The energy of a soliton with a certain momentum is shown to be lower than that of the quasiparticles of a linear theory. At small momenta, these E = E(P) dependences of the soliton and quasiparticles coincide asymptotically. The dependence of the soliton energy on the soliton momentum is a periodic function with a period P 0 = π?/a, whose value does not depend on exchange integrals and depends only on a single crystal parameter, namely, the interatomic distance a. These soliton excitations have common features with the so-called Lieb states, which are well known in many condensed matter models.  相似文献   

18.
A general formula for the probability of multiphonon nonradiative transitions between J multiplets of 4f N states of trivalent rare-earth ions in a crystal derived for a nonlinear mechanism is discussed. A technique is developed for calculating the quantities involved in this formula. Particular attention is given to calculating the spectral density J (p)(Ω), which is the Fourier transform (at the transition frequency) of the pth power of the correlation function K(t) of host ion displacements. Based on the central limit theorem from probability theory, an approximation is proposed for the spectral density J (p)(Ω). The theoretical values of nonradiative multiphonon transition rates are compared with experimental ones.  相似文献   

19.
Corrections of the α3, α4, and α5 orders are calculated for the Lamb shift of the 1S and 2S energy levels of muonic hydrogen μp and muonic deuterium μd. The nuclear structure effects are taken into account in terms of the charge radii of the proton r p and deuteron r d for one-photon interaction, as well as in terms of the electromagnetic form factors of the proton and deuteron for the case of one-loop amplitudes. The μdp isotope shift for the 1S-2S splitting is found to be equal to 101003.3495 meV, which can be treated as a reliable estimate when conducting the corresponding experiment with an accuracy of 10?6. The fine-structure intervals E(1S)-8E(2S) in muonic hydrogen and muonic deuteron are calculated.  相似文献   

20.
The angular distribution of the 440 keV-γ-radiation following the reaction23Na(p, p′)23Na has been measured. The experimental results areW(Θ)=1-(0,147±0,05)P 2(cosΘ) in the resonanceE p =1281 keV andW(Θ)=1-(0,099 ± 0,06)P 2(cosΘ) in the resonanceE p =1456 keV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号