首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Who would have thought before 1986 that an enantiomerically impure catalyst could give a product in an asymmetric synthesis with an enantiomeric excess higher than that of the catalyst? Until then it was assumed that the ee value of the product (eeprod) from an asymmetric synthesis was linearly correlated to the ee value of the chiral auxiliary (eeaux)—in fact a large deviation is possible (see diagram). These nonlinear effects are not only of academic interest since they have a variety of practical uses, which are highlighted in this review.  相似文献   

2.
In this study, optical purity measurement was performed on eight kinds of commercially available pesticide, namely, Dimethenamid-P, Dichlorprop-P, Fluazifop-P butyl, Indoxacarb, Metalaxyl-M, Mecoprop-P, Quizalofop-P ethyl, and Uniconazole-P, in both enantiomer and racemate forms. Chiral separation of each pesticide was achieved by using HPLC with a photodiode-array (PDA) detector and a circular dichroism (CD) detector, which were connected in series. The chiral column used for the enantiomeric separation was a normal phase Chiralpak AD-H column. The mobile phase was n-hexane, with various alcohols added as polar modifiers. The study included investigation of the effects on enantiomeric separation of the percentage of alcohol used, the presence or absence of acid in the mobile phase, and the column temperature, and the optimum detection wavelengths of both PDA and CD detectors. Enantiomeric excess (ee) was calculated as an expression of optical purity. As a result, the ee of some pesticides investigated was approximately (over 95%) in accord with the data provided by manufacturers. However, the ee of Indoxacarb, Uniconazole-P, Quizalofop-P ethyl, and Fluazifop-P butyl was in the range 34.1–94.5%. These results suggest that there is a need to conduct optical purity tests, in addition to a chemical purity test, for optically active pesticides. Presented at BERM-11, October 2007, Tsukuba, Japan.  相似文献   

3.
A novel LC‐based method for the determination of enantiomeric excess (ee) in a sample mixture has been developed by employing on‐line 2D LC. The orthogonal separation system is composed of an NH2 column as the first dimension to elute the target chiral compound from the crude mixture and a chiral column as the second dimension to determine the ee of the target chiral product. A series of crude mixtures from asymmetric reactions have been directly analyzed without prepurification. Good reproducibility (intra‐ and interday precisions were all under 1.33%) and good accuracy (deviations from ee values determined by 1D HPLC were all <1.03%) have been obtained. Compared with the traditional method for the determination of ee, on‐line 2D HPLC can be used in real time and holds great potential in the time‐saving determination of ee in asymmetric synthesis.  相似文献   

4.
Optically pure, chiral imines synthesized from the corresponding aldehydes and 1-(2-aminoalkyl)aziridines in good chemical yields, have been assessed as an NMR chiral shift reagents for effective discrimination of the signals of some acids (mandelic acid and its derivatives and N-protected amino acid). The title compounds have proven to be very useful for the determination of enantiomeric purity and absolute configuration of the aforementioned acid derivatives.  相似文献   

5.
We have developed a working strategy for accurate enantiomeric excess (ee) determination based on induced helical aggregation of achiral perylenebisimide (PBI) dyes. PBI dyes functionalized with boronic acid moieties were shown to be effective chirality sensors for α‐hydroxy carboxylates. Seven α‐hydroxy carboxylates tested showed strong induced Cotton effects in the perylene absorption region around λ=500 nm, which were utilized for enantiomeric excess determination and chemo‐discrimination of the analytes, with an average absolute error of 2 % in ee determination and 100 % correctness in analyte classification. Responses in the absorption spectra, which arise from the guest‐enhanced aggregation, allow the determination of the sample concentration, thus enabling analysis of samples of unknown concentration and ee. The simplicity of the strategy, the ease of sample preparation, and the accuracy demonstrated, can potentially facilitate screening procedures in asymmetric synthesis.  相似文献   

6.
Herein, we present a new substrate for the Soai reaction, which has an adamantylethynyl residue ( 1 g ) and exhibits asymmetric autocatalysis, yielding products with enantiomeric excesses above 99 %. For the first time, all reactions were performed on a parallel synthesizer system to ensure identical reaction conditions. A detailed systematic study of reaction parameters was performed and we report the highest enhancements of enantiomeric excess reported so far in the Soai reaction in one reaction cycle (7.2→94.1 % ee or 3.1→92.1 % ee). Our results led to a set of reaction parameters that yield reproducible results. Therefore, our new starting material 1 g is suitable for systematic and mechanistic studies on this remarkable reaction. A series of experiments designed to quantify the amplification of enantiomeric excess demonstrated that the reaction can be used in principle as a tool for the detection of low enantiomeric excesses: under definite conditions, an unknown low enantiomeric excess (0.1–7 %) was amplified to a detectable one. A back calculation to the original value offers a new method for the determination of small enantiomeric excesses.  相似文献   

7.
Summary An enantioselective liquid-solid batch extraction method is described for the screening of novel chiral stationary phases (CSPs) during optimization studies of chiral selectors derived form a common lead structure. Extraction enantioselectivity (α) values can be calculated from the enantiomeric excess ee-values of the selectand, which are measured in the liquid phase by enantioselective HPLC. Extraction α-values have been correlated with chromatographic α-values. The influence was studied of several experimental parameters of the assay (pHa, buffer concentration, temperature, selector/selectand and phase ratio) on the enantiomeric excess (ee) values of the selectands and the enantioselectivity of the CSPs, respectively. The derived statistically significant model has then been implemented to predict chromatographic α-values of novel CSPs. For example, an ee of 89.3% for DNB-Leu as selectand could be achieved in batch extraction for a novel synthesized but mechanistically similarly-acting CSP derived form quinine. This corresponds to a calculated extraction α-value of 17.7. Based on this αextraction a chromatographic α-value of 28.8 was predicted by the linear correlation model; the experimental HPLC α-value of 31.7 was in good agreement and demonstrated the validity of the proposed screening method. The method is particularly helpful in SO optimization studies.  相似文献   

8.
Because choice of chiral nuclear magnetic resonance (NMR) shift reagents and concentration conditions have been made empirically by trials and errors for chiral NMR analyses, the prediction of NMR signal separation behavior is an urgent issue. In this study, the separation of enantiomeric and enantiotopic 1H and 13C NMR signals for α-amino acids and tartaric acid was performed by using the praseodymium(III) complex with (S,S)-ethylenediamine-N,N′-disuccinate ((S,S)-EDDS). All the present D-amino acids exhibited larger downfield shift of their α-protons and α-carbons compared with those for the corresponding L-amino acids in common. This regularity is applicable to absolute configurational assignment and determination of optical purity of amino acids. The chemical shifts of β-protons of d - and l -alanine fully bound with the Pr(III) ((S,S)-EDDS) complex (δbs) and the adduct formation constants of both enantiomers (Ks) were obtained by dependences of the observed downfield shifts of the β-protons on the total concentrations of the respective enantiomers in the presence of a constant concentration of the Pr(III) complex. The difference in the K values was found to be predominant determining factor for the enantiomeric signal separation. The chemical shifts of both enantiomers (δs) and the enantiomeric signal separations (Δδs) under given conditions could be calculated from the δb and K values. Furthermore, prediction of the signal separation behavior was enabled by using the calculated δ values and the signal broadening obtained by dependences of the half-height widths of the observed signals on the bound/free substrate concentration ratios for the respective enantiomers.  相似文献   

9.
Stereodynamic optical probes are becoming very popular for their capability to act as molecular sensors for the determination of the enantiomeric excess (ee) of chiral compounds. Herein, we describe a new molecular architecture formed by the self‐assembly of three zinc metal ions, two modified tris(2‐pyridylmethyl)amine ligands, and two amino acids. This system is the structural and functional serendipitous evolution of our previous probe for the determination of amino acids ee. In the new system, one of the metals templates in close proximity two chromophores enhancing their exciton coupling.  相似文献   

10.
The enantiomeric ligands (R,R)- and (S,S)-bis(o-anisylphenylphosphino)methane (R,R-14 and S,S-14, respectively) were used to prepare the C 3-point group clusters [Pd3(dppm*)3(CO)(O2CCF3)](CF3CO2) with dppm* = (R,R)-14 or (S,S)-14. The chiral structure of an enantiomeric clusters (with the chiral R,R-ligand (R,R)-14) was unambiguously demonstrated by both X-ray structure determination and by circular dichroism spectroscopy. This paper is dedicated to Professor C.N.R. Rao.  相似文献   

11.
《Tetrahedron letters》2014,55(50):6891-6894
A highly efficient pyrrolidine-derived atropisomeric amino alcohol, (Sa)-1-[2-diphenylhydroxymethyl-6-(trifluoromethyl)phenyl]-2-(1-pyrrolido)methyl-1H-pyrrole, has been synthesized as a chiral ligand for the enantioselective addition of diethylzinc to some prochiral aldehydes to afford (S)-alcohols. The conversion rates were close to quantitative with good to excellent enantiomeric excesses (up to 95% ee).  相似文献   

12.
Asymmetric reduction of 1, 3‐diones catalyzed by (S, S)‐TsD‐PEN‐Ru(II) complex in a mixture of formic add‐triethylamine proceeded with a substrate/catalyst molar ratio of 100 to give (S, S)‐l,3‐diols with excellent diastereomeric (98.6% de) and enantiomeric purities ( > 99% ee). Other C2‐symmetric diols were also obtained in almost quantitative yields with high diastereomeric (80.0%‐84.2% de) and enantiomeric purities ( > 99% ee).  相似文献   

13.
Chiral compounds arising from the replacement of hydrogen atoms by deuterium are very important in organic chemistry and biochemistry. Some of these chiral compounds have a non‐measurable specific rotation, owing to very small differences between the isotopomeric groups, and exhibit cryptochirality. This particular class of compounds is difficult to synthesize and characterize. Herein, we present a catalytic and highly enantioselective conversion of terminal alkenes to various β and more remote chiral isotopomers of 1‐alkanols, with ≥99 % enantiomeric excess (ee), by the Zr‐catalyzed asymmetric carboalumination of alkenes (ZACA) and Cu‐catalyzed cross‐coupling reactions. ZACA‐in situ iodinolysis of allyl alcohol and ZACA‐in situ oxidation of TBS‐protected ω‐alkene‐1‐ols protocols were applied to the synthesis of both (R)‐ and (S)‐difunctional intermediates with 80–90 % ee. These intermediates were readily purified to provide enantiomerically pure (≥99 % ee) compounds by lipase‐catalyzed acetylation. These functionally rich intermediates serve as very useful synthons for the construction of various chiral isotopomers of 1‐alkanols in excellent enantiomeric purity (≥99 % ee) by introducing deuterium‐labeled groups by Cu‐catalyzed cross‐coupling reactions without epimerization.  相似文献   

14.
A protocol for the rapid determination of the absolute configuration and enantiomeric excess (ee) of α‐chiral primary amines with potential applications in asymmetric reaction discovery has been developed. The protocol requires derivatization of α‐chiral primary amines through condensation with pyridine carboxaldehyde to quantitatively yield the corresponding imine. The CuI complex with 2,2′‐bis (diphenylphosphino)‐1,1′‐dinaphthyl (BINAP? CuI) with the imine yields a metal‐to‐ligand charge‐transfer (MLCT) band in the visible region of the circular dichroism (CD) spectrum upon binding. Diastereomeric host–guest complexes give CD signals of the same signs but different amplitudes, allowing for differentiation of enantiomers. Processing the primary optical data from the CD spectrum with linear discriminant analysis (LDA) allows for the determination of the absolute configuration and identification of the amines, and processing with a supervised multilayer perceptron artificial neural network (MLP‐ANN) allows for the simultaneous determination of the ee and concentration. The primary optical data necessary to determine the ee of unknown samples is obtained in two minutes per sample. To demonstrate the utility of the protocol in asymmetric reaction discovery, the ee values and concentrations for an asymmetric metal‐catalyzed reaction are determined. The potential of the application of this protocol in high‐throughput screening (HTS) of ee is discussed.  相似文献   

15.
A new kind of podand‐based dimeric salen ligand was synthesized, and its association with potassium cations was investigated by 1H NMR spectroscopy. The corresponding CrIII–salen dimer was assembled by a supramolecular host–guest self‐assembly process and was then used as a catalyst in highly efficient and enantioselective asymmetric Henry reactions. Regulation by KBArF (BArF=[3,5‐(CF3)2C6H3]4B) led to remarkable improvements in yield (by up to 58 %) and enantioselectivity (for example, from 80 % ee to 96 % ee).  相似文献   

16.
Accurately distinguishing between enantiomeric molecules is a fundamental challenge in the field of chemistry. However, there is still significant room for improvement in both the enantiomeric selectivity (KR(S)/KS(R)) and binding strength of most reported macrocyclic chiral receptors to meet the demands of practical application scenarios. Herein, we synthesized a water-soluble conjugated tubular host—namely, corral[4]BINOL—using a chiral 1,1′-bi-2-naphthol (BINOL) derivative as the repeating unit. The conjugated chiral backbone endows corral[4]BINOL with good fluorescent emission (QY=34 % ) and circularly polarized luminescence (|glum| up to 1.4×10−3) in water. Notably, corral[4]BINOL exhibits high recognition affinity up to 8.6×1010 M−1 towards achiral guests in water, and manifested excellent enantioselectivity up to 18.7 towards chiral substrates, both of which represent the highest values observed among chiral macrocycles in aqueous solution. The ultrastrong binding strength, outstanding enantioselectivity, and facile accessibility, together with the superior fluorescent and chiroptical properties, endow corral[4]BINOL with great potential for a wide range of applications.  相似文献   

17.
Chiral separation membranes have shown great potential for the efficient separation of racemic mixtures into enantiopure components for many applications, such as in the food and pharmaceutical industries; however, scalable fabrication of membranes with both high enantioselectivity and flux remains a challenge. Herein, enantiopure S-poly(2,4-dimethyl-2-oxazoline) (S-PdMeOx) macromonomers were synthesized and used to prepare a new type of enantioselective membrane consisting of a chiral S-PdMeOx network scaffolded by graphene oxide (GO) nanosheets. The S-PdMeOx-based membrane showed a near-quantitative enantiomeric excess (ee) (98.3±1.7 %) of S-(−)-limonene over R-(+)-limonene and a flux of 0.32 mmol m−2 h−1. This work demonstrates the potential of homochiral poly(2,4-disubstituted-2-oxazoline)s in chiral discrimination and provides a new route to the development of highly efficient enantioselective membranes using synthetic homochiral polymer networks.  相似文献   

18.
The NMR spectra of the diastereomeric complexes formed by the coordination of nitrogenous enantiomeric bases with cobalt(III) meso-tetraphenylporphyrin (CoTPP) allow the immediate differentiation of these complexes. The spectra are interpreted on the basis of symmetry (RR and SS) and pseudo-chirality (RS and SR) considerations. The effects are observed in both the proton and carbon spectra and the complexes are stable in both CDCl3 and DMSO-d4 solution. This technique, in principle, allows the ready determination of the optical purity of multifunctional ligands.  相似文献   

19.
Herein we report the use of polyether binders as regulation agents (RAs) to enhance the enantioselectivity of rhodium‐catalyzed transformations. For reactions of diverse substrates mediated by rhodium complexes of the α,ω‐bisphosphite‐polyether ligands 1 – 5 , a – d , the enantiomeric excess (ee) of hydroformylations was increased by up to 82 % (substrate: vinyl benzoate, 96 % ee), and the ee value of hydrogenations was increased by up to 5 % (substrate: N‐(1‐(naphthalene‐1‐yl)vinyl)acetamide, 78 % ee). The ligand design enabled the regulation of enantioselectivity by generation of an array of catalysts that simultaneously preserve the advantages of a privileged structure in asymmetric catalysis and offer geometrically close catalytic sites. The highest enantioselectivities in the hydroformylation of vinyl acetate with ligand 4 b were achieved by using the Rb[B(3,5‐(CF3)2C6H3)4] (RbBArF) as the RA. The enantioselective hydrogenation of the substrates 10 required the rhodium catalysts derived from bisphosphites 3 a or 4 a , either alone or in combination with different RAs (sodium, cesium, or (R,R)‐bis(1‐phenylethyl)ammonium salts). This design approach was supported by results from computational studies.  相似文献   

20.
 Horseradish peroxidase (HRP), myeloperoxidase (MPO), and manganese peroxidase (MnP) have been shown to catalyze the asymmetric sulfoxidation of thioanisole. When H2O2 was added stepwise to MPO, a maximal yield of 78% was obtained at pH 5 (ee 23%), whereas an optimum in the enantiomeric excess (32%, (R)-sulfoxide) was found at pH 6 (60% yield). For MnP a yield of 18% and a high enantiomeric excess of 91% of the (S)-sulfoxide were obtained at pH 5 and a yield of 36% and an ee of 87% at pH 7.0. Optimization of the conversion catalyzed by horseradish peroxidase at pH 7.0 by controlled continuous addition of hydrogen peroxide during turnover and monitoring the presence of native enzyme as well as of intermediates I, II, and III led to the formation of the sulfoxide in high yield (100%) and moderate enantioselectivity (60%, (S)-sulfoxide).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号