首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
采用简便的旋涂过程和一步水热法在压电基片上制备了Ga掺杂的ZnO纳米薄膜(GZO)。在水热处理过程中,通过添加不同的聚合物可形成纳米盘和纳米花状形貌的薄膜。采用场发射扫描电镜(Fe-SEM)、X射线衍射(XRD)和Raman光谱表征了样品的形貌、微结构和组成。 XRD和FE-SEM结果证明,在AlN/Si压电基片上形成的纳米盘、纳米棒和纳米花状GZO均为纤维锌矿相。采用浸渍法进一步在所制GZO样品上固定了绿色的荧光蛋白质(GFP)。运用原子力显微镜和荧光光谱分析了GFP与GZO表面结合的性质,考察了其用于传感器和生物成像技术的可行性。痕量GFP的固定使该材料产生荧光响应,表明其用于紫外光传感器时具有较好活性。  相似文献   

2.
Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both ‘soft’ and solid thin films. ‘Soft’ polymer thin films of polystyrene and poly(styrene–ethylene/butylene–styrene) block copolymer were prepared by spin‐coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two‐layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80–130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis of a poly(azo)urethane by fixing CO(2) in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed "clean method" and the polymers obtained are named "NIPUs" (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per mer unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.  相似文献   

4.
This paper reports the synthesis and characterization of gallium nitride (GaN) thin films deposited on p-type silicon (100) substrates by using low cost spin coating method under various nitridation temperatures. This work demonstrated that spin coating with the new prepared precursor solution can be used as a versatile method for the successfully growth of GaN thin films. Furthermore, the influence of varying nitridation temperatures on the structural, morphological, and optical properties of synthesized GaN thin films were studied in this work. The GaN thin films were characterized by X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, photoluminescence and Raman spectroscopy. All the characteristics of the GaN thin films were effectively improved with the increasing of the nitridation temperatures from 750 to 950 °C and degraded at temperature of 1,050 °C. The measured results show that nitridation temperature plays an important role in improving the crystalline quality of the GaN thin films and the most efficient nitridation temperature was at 950 °C.  相似文献   

5.
The surface morphology of thin molecularly imprinted polymer films has been studied using atomic force microscopy (AFM). The films were produced by spin coating onto glass substrates and examined as a function of host polymer, imprinting template, casting solvent, spin‐coater rotation speed and post‐production treatment. It was observed that the gross features of such films are template controlled. The fine structure is determined by parameters such as solvent, spin speed or subsequent treatment. The relationship between these observations, polymer–template interactions and the mechanism of film formation in spin coating is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents experimental results concerning the influence of the additives on the physical properties of polymer films. Metal oxides/inorganic salts were used as additives in vinyl-polymers solutions. The physical properties of the metal doped polymer films can be significantly modified by the composition of the doping elements and the curing conditions of the polymer. Morphologic, electronic, magnetic and optic properties of the doped polymers were analysed by AFM, SEM, Mössbauer spectroscopy and optical measurements. The film composition and the deposition processes were optimized to allow a better control of the optical parameters (refractive index, transmission), to reduce the processing temperatures and to improve the chemical sensitivity of the films for sensor applications. These compounds can be easily spin coated onto a variety of directly patterned semiconductor substrates.  相似文献   

7.
Aggregate dispersions of P3HT in two series of solvent mixtures, chloroform:dichloromethane and toluene:dichloromethane, are used to study the impact of the evaporation velocity and film thickness on the P3HT films processed using two spin‐coating speeds (1000 rpm and 2000 rpm). The structural order and surface morphology were investigated with UV/Vis absorption spectroscopy and atomic force microscopy techniques. There is no evidence that the characteristics of the liquid phase P3HT dispersions impact the structures of the films, which is in agreement with a previous study of drop cast P3HT films that were dried over much longer time periods. An association is observed between the extent of aggregation in the liquid phase and the thickness and surface roughness parameters of the films. However, the structural order does not correlate with the thickness of the films, which was previously reported for polymer films processed from amorphous polymer solutions in pure organic solvents. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 330–343  相似文献   

8.
The creation of nanostructures of the photoactive polymer polypyrrole (PPy) on glass substrates with the spin‐coating method is described. No additional post‐production treatment is necessary to obtain uniformly distributed photoactive nanostructures on macroscopically scaled substrates. Based on X‐ray reflectivity measurements, the critical solution concentration of PPy below which these nanostructures develop is determined. The PPy nanostructures are displayed with atomic force microscopy (AFM) measurements, which prove that the nanostructures form directly on the substrate. With UV/Vis spectroscopy the absorption behavior of the nanostructures is probed in comparison to PPy films and PPy solutions. A linear dependence of the absorption of the nanostructure on the surface coverage measured with AFM is detected. The influence of confinement on the conjugation length results in a modified absorption behavior of the nanostructures.  相似文献   

9.
Solution behavior of carboxymethylcellulose acetate butyrate (CMCAB) in acetone and ethyl acetate has been investigated by small-angle X-ray scattering (SAXS) and capillary viscometry and correlated with the characteristics of CMCAB films. Viscosity and SAXS measurements showed that ethyl acetate is a better solvent than acetone for CMCAB. Thin films of CMCAB were deposited onto silicon wafers (Si/SiO2) by spin coating. AFM images revealed that CMCAB spin coated films from solutions prepared in ethyl acetate were homogeneous and flat. However, films obtained from solutions in acetone were very rough. Contact angle measurements with polar and apolar test liquids characterized CMCAB surfaces as hydrophobic and allowed estimating the surface energy of CMCAB. Sum frequency generation vibrational spectroscopy was used to understand the role played by solvents and to gain insight about molecular orientation at Si/SiO2/CMCAB interface.  相似文献   

10.
Flat and highly (111) oriented gold and silver films were prepared by physical vapour deposition (PVD) using optimized deposition parameters. On these films, which were characterized with atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), titanium dioxide films were deposited by electron beam evaporation and dip coating. Dip coating from titanium tetraisopropoxide solutions resulted in films with different morphology and coverage depending on the alkoxide concentration (0.009 mol/L – 0.60 mol/L) and the post-treatment. Scanning electron microscopy (SEM) and AFM revealed that the deposited TiO2 consists of amorphous, highly porous islands when the applied alkoxide concentration is high (0.05 mol/L – 0.6 mol/L). At higher temperatures these amorphous TiO2 islands sintered significantly and crystallized to anatase. In contrast, transparent TiO2 films were obtained from low concentrated alkoxide solutions (< 0.01 mol/L) which covered the whole substrate, similar to electron beam evaporated thin films. Sputter profiles with ion scattering spectroscopy (ISS) indicated that the film thickness is in the range of 2 nm when alkoxide solutions with a concentration of 9 mmol/L are used. The deposition of TiO2 by electron beam evaporation normally resulted in significantly reduced TiO2 films, completely oxidized ones were obtained when deposition was performed at elevated oxygen partial pressures (p(O2) > 2 × 10–5 mbar).  相似文献   

11.
孟丹  王和义  刘秀华  丁兰岚 《应用化学》2011,28(12):1379-1386
采用溶胶-凝胶法制备了Fe掺杂的TiO2薄膜,利用X射线光电子能谱、X射线衍射技术、显微共聚焦拉曼光谱、紫外可见光谱和原子力显微镜等对薄膜进行表征,以甲基橙为反应模型对光催化活性进行测试。 结果表明,在300~600 ℃焙烧时,TiO2以锐钛矿结构存在,700 ℃焙烧时出现金红石结构。 随掺铁量和焙烧温度的增加,Fe/TiO2薄膜的表面粗糙度和晶粒尺寸均逐渐增大;随镀膜层数的增加,Fe/TiO2薄膜光谱吸收向可见光方向移动;较低含量的铁掺杂改善了TiO2薄膜的光催化活性,而较高含量的铁掺杂则使TiO2薄膜的光催化活性下降,掺铁量为0.1%时Fe/TiO2薄膜的光催化活性最好。  相似文献   

12.
Thin films of an amorphous polymer, polystyrene (PS), and a crystalline polymer, poly(ε-caprolactone) (PCL), blend were prepared by spin coating a toluene solution. Surface chemical compositions of the blend films were measured by X-ray photoelectron spectroscopy (XPS), and the surface and interface topographical changes were followed by atomic force microscopy (AFM). By changing the PS concentration and keeping the PCL concentration of the solution at 1 wt %, a great variety of morphologies were constructed. The results show that the morphology of the blend films can be divided into three regions with increasing PS concentration. In region I, PS island domains are embedded in PCL crystals when the PS concentration is lower than 0.3 wt % and the size of the PS island increases with increasing PS concentration. In region II, holes with different sizes surrounded by a low rim are obtained when the concentration of PS is between 0.35 and 0.5 wt %. After selectively washing the PS domains, we studied the interface morphology of PS/PCL and found that the upper PS-rich layer extended into the bottom PCL layer, forming a trench surrounding the holes. In region III, an enriched two-layer structure with the PS-rich layer on top of the blend films and the PCL-rich crystal layer underneath is obtained when the concentration of PS is higher than 0.5 wt %. Last, the formation mechanism of the different surface and interface morphologies is further discussed in terms of the vertical phase separation to a layered structure, followed by liquid-liquid dewetting and crystallization processes during spin coating.  相似文献   

13.
The inner structure and nanoscale distribution of the stiffness was studied for polymer-single-wall carbon nanotube composites. Dispersion of nanotubes in a polystyrene and polyurethane polymer matrix was achieved by a proper choice of the organic solvent (NMP) and sonification of polymer/SWNT solutions. Ultrathin nanocomposite films were prepared through a dip-coating procedure and possessed a noticeable degree of nanotube orientation in the direction of the applied shear force. Peculiarities of the phase separation in the films were studied by atomic force microscopy (with application of force modulation mode to map the nanotube distribution within the polymer matrix) and Raman spectroscopy.  相似文献   

14.
Homogeneous crack-free lead zirconate titanate (Pb(Zr0.45Ti0.55)O3: PZT 45/55) films were prepared by a chemically modified sol-gel process using lead acetate trihydrate, zirconium n-propoxide, and titanium isopropoxide precursors. The coating solutions were modified by the addition of diethanolamine. Single and multilayer films were deposited with a 2000 rpm spin rate on fused silica and MgO(100) substrates. Multiple spin coating with an intermediate heat treatment in air at 400°C for 3 min between coatings was performed to obtain films up to 2 m in thickness. The formation of the tetragonal perovskite structure was found to depend on the intermediate firing temperature, final annealing temperature, and annealing time. A 650°C rapid thermal annealing treatment in oxygen was required to crystallize the PZT film into the perovskite structure. The films were characterized using optical spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermo-gravimetry and differential scanning calorimetry (TG-DSC). The optical constants of the PZT films were evaluated from spectral transmittance and reflectance measurements. Optical constants are presented over the visible and near infrared region.  相似文献   

15.
Layer-by-layer (LbL) assembly of polymer electrolyte multilayers is now a well-established method for the fabrication of thin films by sequential adsorption of alternating layers of oppositely charged polyelectrolytes. Most commonly, such adsorptions have been from quiescent solutions of varying ionic strength and pH. Here, we report results on an alternative processing route for the achievement of polymeric multilayer assemblies of poly(sodium-4-styrene sulfonate) and poly(allylamine hydrochloride) that utilizes conventional spin coating. We investigated and describe herein the dependence of multilayer film buildup on solution ionic strength for comparison with similar dependence in quiescent adsorption. Using UV-Vis spectroscopy we monitored the growth of the multilayered films, while with Atomic Force Microscopy (AFM) we examined the surface features and measured coating thicknesses at different salt concentrations. AFM and UV-Vis data reveal two regimes of behavior with increasing salt: strong salt-dependence at low salt contents, and weak salt-dependence for high salt contents. To explain this observation, we introduce the relevance of the dimensionless group De = τ, the local Deborah Number, to the problem. As ionic strength increases, τ increases so that spin-assembly flow influences adsorbed conformation, and thus LbL growth rate. Our results indicate the ability to design and control polyelectrolyte multilayered structures prepared via spin assembly by varying solution properties that influence the conformation of deposited polymer chains. Additionally, our studies reveal the need for study of the fundamental mechanisms of polyelectrolyte adsorption within complex flow fields. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3654–3666, 2004  相似文献   

16.
Cellulose nanocrystal submonolayers by spin coating   总被引:1,自引:0,他引:1  
Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images, anionic cellulose nanocrystals formed small aggregates on the anionic silica substrate, whereas a uniform two-dimensional distribution of nanocrystals was achieved on the cationic titania substrate. The uniform distribution of cellulose nanocrystal submonolayers on titania is an important factor when dimensional analysis of the nanocrystals is desired. Furthermore, the amount of nanocrystals deposited on titania was multifold in comparison to the amounts on silica, as revealed by AFM image analysis and X-ray photoelectron spectroscopy. Amorphous cellulose, the third substrate, resulted in a somewhat homogeneous distribution of the nanocrystal submonolayers, but the amounts were as low as those on the silica substrate. These differences in the cellulose nanocrystal deposition were attributed to electrostatic effects: anionic cellulose nanocrystals are adsorbed on cationic titania in addition to the normal spin coating deposition. The anionic silica surface, on the other hand, causes aggregation of the weakly anionic cellulose nanocrystals which are forced on the repulsive substrate by spin coating. The electrostatically driven adsorption also influences the film thickness of continuous ultrathin films of cellulose nanocrystals. The thicker films of charged nanocrystals on a substrate of opposite charge means that the film thickness is not independent of the substrate when spin coating cellulose nanocrystals in the ultrathin regime (<100 nm).  相似文献   

17.
Cylindrical micelles prepared in aqueous solutions from cationic surfactants octadecyl trimethylammonium (OTA+) or cetyltrimethylammonium (CTA+) and parachlorobenzoate (PCB) counterion were successfully imaged after evaporation of water using tapping mode atomic force microscopy (TM-AFM) onto very smooth gold and glass substrates. With the help of the obtained topography AFM images, it was shown that the micellar structures are preserved on gold substrates after evaporation of the solvent despite the new set of stresses due mainly to capillary forces and dehydration. The influence of the substrate on the resulting micellar morphology observed in air was investigated for these two materials: cylindrical micelles were evidenced as loosely adherent on gold surface in the presence of parachlorobenzoate (PCB) and identical, geometrically speaking, to those known to exist in aqueous solutions. In this situation, topographic AFM images allowed us to determine accurately their geometrical characteristics such as diameter and length in the nanometer range. On the other hand, AFM images obtained in air on glass surfaces revealed micellar structures that are different from those existing in the bulk of the solution. Indeed, bilayer-type micelles with a thickness close to twice the surfactant monomer expected length were observed, indicating that the well-established and strong influence of glass on micelle geometry at the glass/solution interface is maintained after evaporation of water. These results have been analyzed on the basis of positive charge of gold deduced from electrochemical impedance spectroscopy (EIS) and Raman spectroscopy measurements on one hand and of the negative charge of glass on the other hand. Although these results appeal to new theoretical considerations dealing with dynamics of evaporation of micellar solution drops and/or with counterion contributions to macromolecular interactions in aqueous solutions and in air, this new AFM imaging method appears to be the more adequate one to image and measure the micelles formed in the presence of water.  相似文献   

18.
Scanning angle (SA) Raman spectroscopy was used to measure the thickness and composition of polystyrene films. A sapphire prism was optically coupled to a sapphire substrate on which 6–12% (w/v) polystyrene in toluene was spin coated. Raman spectra were collected as the incident angle of the p-polarized, 785-nm excitation laser was varied from 56 to 70°. These angles span above and below the critical angle for a sapphire/polystyrene interface. The thickness of the polystyrene film was determined using a calibration curve constructed by calculating the integrated optical energy density distribution as a function of incident angle, distance from the prism interface and polymer thickness. The calculations were used to determine the incident angle where waveguide modes are excited within the polymer film, which is the angle with the highest integrated optical energy density. The film thicknesses measured by SA Raman spectroscopy ranged from less than 400 nm to 1.8 μm. The average percent uncertainty in the SA Raman determinations for all films was 4%, and the measurements agreed with those obtained from optical interferometery within the experimental uncertainty for all but two films. For the 1270-nm and 580-nm polystyrene films, the SA Raman measurements overestimated the film thickness by 5 and 18%, respectively. The dependence of the calibration curve on excitation polarization and composition of the polymer and bulk layers was evaluated. This preliminary investigation demonstrates that scanning angle Raman spectroscopy is a versatile method applicable whenever the chemical composition and thickness of interfacial polymer layers needs to be measured.  相似文献   

19.
以甲醇有机溶液作碳源,应用直流脉冲电化学沉积方法,在不锈钢表面制备了类金刚石碳薄膜.用原子力显微镜、扫描电镜、拉曼光谱仪和傅立叶红外吸收光谱表征该薄膜的表面形貌和结构.结果表明:经电化学沉积的含氢类金刚石碳薄膜均匀、致密,表面粗糙度小;Raman光谱在1 332.51cm-1处有一强的谱峰,与金刚石的特征谱峰相重合.加入活性添加剂,增加了电流密度,使沉积速率提高到0.5μm/h.  相似文献   

20.
以聚乙烯醇和羧基化海藻糖为原料合成了聚乙烯醇-g-海藻糖(PVA-g-Tre), 将接枝物与少量乙二醇二甲基丙烯酸酯混合, 通过光引发聚合制备了亲水性半互穿网络防雾/防霜涂层. 通过核磁共振氢谱和傅里叶变换红外光谱对PVA-g-Tre的化学结构进行了表征, 利用原子力显微镜、 水接触角测试仪、 拉曼光谱等分析了涂层表面的粗糙度、 润湿性及水与大分子之间的氢键作用, 并考察了涂层的透光性和防雾及防霜性能. 结果表明, 含有不同海藻糖接枝率PVA-g-Tre的涂层表面粗糙度较低且透光率好, 与含有PVA的涂层相比, 引入海藻糖提高了PVA-g-Tre涂层的亲水性和润湿性, 使其同时具有良好的防雾和防霜性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号