首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

2.
We prove that a complete noncompact orientable stable minimal hypersurface in \mathbbSn+1{\mathbb{S}^{n+1}} (n ≤ 4) admits no nontrivial L 2-harmonic forms. We also obtain that a complete noncompact strongly stable hypersurface with constant mean curvature in \mathbbRn+1{\mathbb{R}^{n+1}} or \mathbbSn+1{\mathbb{S}^{n+1}} (n ≤ 4) admits no nontrivial L 2-harmonic forms. These results are generalized versions of Tanno’s result on stable minimal hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}}.  相似文献   

3.
We prove that the only compact surfaces of positive constant Gaussian curvature in \mathbbH2×\mathbbR{\mathbb{H}^{2}\times\mathbb{R}} (resp. positive constant Gaussian curvature greater than 1 in \mathbbS2×\mathbbR{\mathbb{S}^{2}\times\mathbb{R}}) whose boundary Γ is contained in a slice of the ambient space and such that the surface intersects this slice at a constant angle along Γ, are the pieces of a rotational complete surface. We also obtain some area estimates for surfaces of positive constant Gaussian curvature in \mathbbH2×\mathbbR{\mathbb{H}^{2}\times\mathbb{R}} and positive constant Gaussian curvature greater than 1 in \mathbbS2×\mathbbR{\mathbb{S}^{2}\times\mathbb{R}} whose boundary is contained in a slice of the ambient space. These estimates are optimal in the sense that if the bounds are attained, the surface is again a piece of a rotational complete surface.  相似文献   

4.
Let ${s,\,\tau\in\mathbb{R}}Let s, t ? \mathbbR{s,\,\tau\in\mathbb{R}} and q ? (0,¥]{q\in(0,\infty]} . We introduce Besov-type spaces [(B)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} for p ? (0, ¥]{p\in(0,\,\infty]} and Triebel–Lizorkin-type spaces [(F)\dot]s, tpq(\mathbbRn) for p ? (0, ¥){{{{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}\,{\rm for}\, p\in(0,\,\infty)} , which unify and generalize the Besov spaces, Triebel–Lizorkin spaces and Q spaces. We then establish the j{\varphi} -transform characterization of these new spaces in the sense of Frazier and Jawerth. Using the j{\varphi} -transform characterization of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\, {\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} , we obtain their embedding and lifting properties; moreover, for appropriate τ, we also establish the smooth atomic and molecular decomposition characterizations of [(B)\dot]s, tpq(\mathbbRn) and [(F)\dot]s, tpq(\mathbbRn){{{{\dot B}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}\,{\rm and}\, {{\dot F}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}} . For s ? \mathbbR{s\in\mathbb{R}} , p ? (1, ¥), q ? [1, ¥){p\in(1,\,\infty), q\in[1,\,\infty)} and t ? [0, \frac1(max{pq})¢]{\tau\in[0,\,\frac{1}{(\max\{p,\,q\})'}]} , via the Hausdorff capacity, we introduce certain Hardy–Hausdorff spaces B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} and prove that the dual space of B[(H)\dot]s, tpq(\mathbbRn){{{{B\dot{H}^{s,\,\tau}_{p,\,q}(\mathbb{R}^{n})}}}} is just [(B)\dot]-s, tp¢, q(\mathbbRn){\dot{B}^{-s,\,\tau}_{p',\,q'}(\mathbb{R}^{n})} , where t′ denotes the conjugate index of t ? (1,¥){t\in (1,\infty)} .  相似文献   

5.
Let k [n] = k[x 1,…, x n ] be the polynomial algebra in n variables and let \mathbbAn = \textSpec  \boldk[ n ] {\mathbb{A}^n} = {\text{Spec}}\;{{\bold{k}}^{\left[ n \right]}} . In this note we show that the root vectors of \textAu\textt*( \mathbbAn ) {\text{Au}}{{\text{t}}^*}\left( {{\mathbb{A}^n}} \right) , the subgroup of volume preserving automorphisms in the affine Cremona group \textAut( \mathbbAn ) {\text{Aut}}\left( {{\mathbb{A}^n}} \right) , with respect to the diagonal torus are exactly the locally nilpotent derivations x α (∂/∂x i ), where x α is any monomial not depending on x i . This answers a question posed by Popov.  相似文献   

6.
Affine extractors over prime fields   总被引:1,自引:0,他引:1  
An affine extractor is a map that is balanced on every affine subspace of large enough dimension. We construct an explicit affine extractor AE from \mathbbFn \mathbb{F}^n to \mathbbF\mathbb{F}, \mathbbF\mathbb{F} a prime field, so that AE(x) is exponentially close to uniform when x is chosen uniformly at random from an arbitrary affine subspace of \mathbbFn \mathbb{F}^n of dimension at least δn, 0<δ≤1 a constant. Previously, Bourgain constructed such affine extractors when the size of \mathbbF\mathbb{F} is two. Our construction is in the spirit of but different than Bourgain’s construction. This allows for simpler analysis and better quantitative results.  相似文献   

7.
We consider the operator exponential e tA , t > 0, where A is a selfadjoint positive definite operator corresponding to the diffusion equation in \mathbbRn {\mathbb{R}^n} with measurable 1-periodic coefficients, and approximate it in the operator norm ||   ·   ||L2( \mathbbRn ) ? L2( \mathbbRn ) {\left\| {\; \cdot \;} \right\|_{{{L^2}\left( {{\mathbb{R}^n}} \right) \to {L^2}\left( {{\mathbb{R}^n}} \right)}}} with order O( t - \fracm2 ) O\left( {{t^{{ - \frac{m}{2}}}}} \right) as t → ∞, where m is an arbitrary natural number. To construct approximations we use the homogenized parabolic equation with constant coefficients, the order of which depends on m and is greater than 2 if m > 2. We also use a collection of 1-periodic functions N α (x), x ? \mathbbRn x \in {\mathbb{R}^n} , with multi-indices α of length | a| \leqslant m \left| \alpha \right| \leqslant m , that are solutions to certain elliptic problems on the periodicity cell. These results are used to homogenize the diffusion equation with ε-periodic coefficients, where ε is a small parameter. In particular, under minimal regularity conditions, we construct approximations of order O(ε m ) in the L 2-norm as ε → 0. Bibliography: 14 titles.  相似文献   

8.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

9.
In this paper, we introduce a construction method of total ordering cone on \mathbbRn{\mathbb{R}^n} . It is shown that any total ordering cone on \mathbbRn{\mathbb{R}^n} is isomorphic to the cone \mathbbRnlex{\mathbb{R}^n_{lex}} . Existence of a total ordering cone that contain given cone with a compact base is shown. By using this cone, a solving method of vector and set valued optimization problems is presented.  相似文献   

10.
For each n > 1 and each multiplicative closed set of integers S, we study closed model category structures on the pointed category of topological spaces, where the classes of weak equivalences are classes of maps inducing isomorphism on homotopy groups with coefficients in determined torsion abelian groups, in degrees higher than or equal to n. We take coefficients either on all the cyclic groups with sS, or in the abelian group where is the group of fractions of the form with sS. In the first case, for n > 1 the localized category is equivalent to the ordinary homotopy category of (n − 1)-connected CW-complexes whose homotopy groups are S-torsion. In the second case, for n > 1 we obtain that the localized category is equivalent to the ordinary homotopy category of (n − 1)-connected CW-complexes whose homotopy groups are S-torsion and the nth homotopy group is divisible. These equivalences of categories are given by colocalizations , obtained by cofibrant approximations on the model structures. These colocalization maps have nice universal properties. For instance, the map is final (in the homotopy category) among all the maps of the form YX with Y an (n − 1)-connected CW-complex whose homotopy groups are S-torsion and its nth homotopy group is divisible. The spaces , are constructed using the cones of Moore spaces of the form M(T, k), where T is a coefficient group of the corresponding structure of models, and homotopy colimits indexed by a suitable ordinal. If S is generated by a set P of primes and S p is generated by a prime pP one has that for n > 1 the category is equivalent to the product category . If the multiplicative system S is generated by a finite set of primes, then localized category is equivalent to the homotopy category of n-connected Ext-S-complete CW-complexes and a similar result is obtained for .  相似文献   

11.
We study the limiting behavior of the K?hler–Ricci flow on \mathbbP(O\mathbbPn ?O\mathbbPn(-1)?(m+1)){{\mathbb{P}(\mathcal{O}_{\mathbb{P}^n} \oplus \mathcal{O}_{\mathbb{P}^n}(-1)^{\oplus(m+1)})}} for m, n ≥ 1, assuming the initial metric satisfies the Calabi symmetry. We show that the flow either shrinks to a point, collapses to \mathbbPn{{\mathbb{P}^n}} or contracts a subvariety of codimension m + 1 in the Gromov–Hausdorff sense. We also show that the K?hler–Ricci flow resolves a certain type of cone singularities in the Gromov–Hausdorff sense.  相似文献   

12.
This paper deals with a coupled system of fourth-order parabolic inequalities |u|t ≥ 2u + |v|q,|v|t ≥ 2v + |u|p in S = Rn × R+ with p,q > 1,n ≥ 1.A FujitaLiouville type theorem is established that the inequality system does not admit nontrivial nonnegative global solutions on S whenever n4 ≤ max(ppq+11,pqq+11).Since the general maximum-comparison principle does not hold for the fourth-order problem,the authors use the test function method to get the global non-existence of nontrivial solutions.  相似文献   

13.
We consider the class of minimal surfaces given by the graphical strips ${{\mathcal S}}We consider the class of minimal surfaces given by the graphical strips S{{\mathcal S}} in the Heisenberg group \mathbb H1{{\mathbb {H}}^1} and we prove that for points p along the center of \mathbb H1{{\mathbb {H}}^1} the quantity \fracsH(S?B(p,r))rQ-1{\frac{\sigma_H(\mathcal S\cap B(p,r))}{r^{Q-1}}} is monotone increasing. Here, Q is the homogeneous dimension of \mathbb H1{{\mathbb {H}}^1} . We also prove that these minimal surfaces have maximum volume growth at infinity.  相似文献   

14.
The local well-posedness for the Cauchy problem of the liquid crystals system in the critical Besov space \(\dot B_{p,1}^{n/p - 1}\left( {{\mathbb{R}^n}} \right) \times \dot B_{p,1}^{n/p}\left( {{\mathbb{R}^n}} \right)\) with n < p < 2n is established by using the heat semigroup theory and the Littlewood-Paley theory. The global well-posedness for the system is obtained with small initial datum by using the fixed point theorem. The blow-up results for strong solutions to the system are also analysed.  相似文献   

15.
Denote by \mathbbHn{\mathbb{H}^n} the 2n + 1 dimensional Heisenberg group. We show that the pairs (\mathbbRk ,\mathbbHn){(\mathbb{R}^k ,\mathbb{H}^n)} and (\mathbbHk ,\mathbbHn){(\mathbb{H}^k ,\mathbb{H}^n)} do not have the Lipschitz extension property for k  >  n.  相似文献   

16.
Let Π n d denote the space of all spherical polynomials of degree at most n on the unit sphere $\mathbb{S}^{d}Let Π n d denote the space of all spherical polynomials of degree at most n on the unit sphere \mathbbSd\mathbb{S}^{d} of ℝ d+1, and let d(x,y) denote the geodesic distance arccos xy between x,y ? \mathbbSdx,y\in\mathbb{S}^{d} . Given a spherical cap
B(e,a)={x ? \mathbbSd:d(x,e) £ a}    (e ? \mathbbSd, a ? (0,p) is bounded awayfrom p),B(e,\alpha)=\big\{x\in\mathbb{S}^{d}:d(x,e)\leq\alpha\big\}\quad \bigl(e\in\mathbb{S}^{d},\ \alpha\in(0,\pi)\ \mbox{is bounded awayfrom}\ \pi\bigr),  相似文献   

17.
Let ${\mathfrak{g}}Let \mathfrakg{\mathfrak{g}} be a finite dimensional simple Lie algebra over an algebraically closed field \mathbbK\mathbb{K} of characteristic 0. Let \mathfrakg\mathbbZ{\mathfrak{g}}_{{\mathbb{Z}}} be a Chevalley ℤ-form of \mathfrakg{\mathfrak{g}} and \mathfrakg\Bbbk=\mathfrakg\mathbbZ?\mathbbZ\Bbbk{\mathfrak{g}}_{\Bbbk}={\mathfrak{g}}_{{\mathbb{Z}}}\otimes _{{\mathbb{Z}}}\Bbbk, where \Bbbk\Bbbk is the algebraic closure of  \mathbbFp{\mathbb{F}}_{p}. Let G\BbbkG_{\Bbbk} be a simple, simply connected algebraic \Bbbk\Bbbk-group with \operatornameLie(G\Bbbk)=\mathfrakg\Bbbk\operatorname{Lie}(G_{\Bbbk})={\mathfrak{g}}_{\Bbbk}. In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(\mathfrakg\Bbbk)U({\mathfrak{g}}_{\Bbbk}) to show that if the Gelfand–Kirillov conjecture (from 1966) holds for \mathfrakg{\mathfrak{g}}, then for all p≫0 the field of rational functions \Bbbk (\mathfrakg\Bbbk)\Bbbk ({\mathfrak{g}}_{\Bbbk}) is purely transcendental over its subfield \Bbbk(\mathfrakg\Bbbk)G\Bbbk\Bbbk({\mathfrak{g}}_{\Bbbk})^{G_{\Bbbk}}. Very recently, it was proved by Colliot-Thélène, Kunyavskiĭ, Popov, and Reichstein that the field of rational functions \mathbbK(\mathfrakg){\mathbb{K}}({\mathfrak{g}}) is not purely transcendental over its subfield \mathbbK(\mathfrakg)\mathfrakg{\mathbb{K}}({\mathfrak{g}})^{\mathfrak{g}} if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4. We prove a modular version of this result (valid for p≫0) and use it to show that, in characteristic 0, the Gelfand–Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4, then the Lie field of \mathfrakg{\mathfrak{g}} is more complicated than expected.  相似文献   

18.
19.
We consider the generalized Gagliardo–Nirenberg inequality in in the homogeneous Sobolev space with the critical differential order s = n/r, which describes the embedding such as for all q with pq < ∞, where 1 < p < ∞ and 1 < r < ∞. We establish the optimal growth rate as q → ∞ of this embedding constant. In particular, we realize the limiting end-point r = ∞ as the space of BMO in such a way that with the constant C n depending only on n. As an application, we make it clear that the well known John–Nirenberg inequality is a consequence of our estimate. Furthermore, it is clarified that the L -bound is established by means of the BMO-norm and the logarithm of the -norm with s > n/r, which may be regarded as a generalization of the Brezis–Gallouet–Wainger inequality.  相似文献   

20.
We study hypersurfaces in the Lorentz-Minkowski space \mathbbLn+1{\mathbb{L}^{n+1}} whose position vector ψ satisfies the condition L k ψ = + b, where L k is the linearized operator of the (k + 1)th mean curvature of the hypersurface for a fixed k = 0, . . . , n − 1, A ? \mathbbR(n+1)×(n+1){A\in\mathbb{R}^{(n+1)\times(n+1)}} is a constant matrix and b ? \mathbbLn+1{b\in\mathbb{L}^{n+1}} is a constant vector. For every k, we prove that the only hypersurfaces satisfying that condition are hypersurfaces with zero (k + 1)th mean curvature, open pieces of totally umbilical hypersurfaces \mathbbSn1(r){\mathbb{S}^n_1(r)} or \mathbbHn(-r){\mathbb{H}^n(-r)}, and open pieces of generalized cylinders \mathbbSm1(r)×\mathbbRn-m{\mathbb{S}^m_1(r)\times\mathbb{R}^{n-m}}, \mathbbHm(-r)×\mathbbRn-m{\mathbb{H}^m(-r)\times\mathbb{R}^{n-m}}, with k + 1 ≤ m ≤ n − 1, or \mathbbLm×\mathbbSn-m(r){\mathbb{L}^m\times\mathbb{S}^{n-m}(r)}, with k + 1 ≤ nm ≤ n − 1. This completely extends to the Lorentz-Minkowski space a previous classification for hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}} given by Alías and Gürbüz (Geom. Dedicata 121:113–127, 2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号