首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Luminescence measurements of X-irradiated SrF2:Ni are reported. After X-irradiation two emission bands have been found. One of them peaked at 293 nm and has an excitation band at 267 nm. The other one at about 770 nm, which is much weaker, has an excitation band at 274 nm. Both emission bands are also observed under X-ray excitation. A comparison with some previous studies of the absorption and thermoluminescence properties of X-irradiated SrF2:Ni indicates that the emission bands are due to two different kinds of Ni2+ centers. The proposed emission mechanisms are similar to those found in CaF2:Ni.  相似文献   

2.
Photoluminescence of X-irradiated CaF2:Co single crystals is reported. The emission spectrum shows four peaks at 505, 550, 640 and 685 nm, all of them with an excitation band at 275 nm. The same emission spectrum, plus a band at 280 nm, is found in X-ray excited luminescence measurements. Thermoluminescence of 80 K X-irradiated crystals gives a glow curve with five peaks at 100, 125, 145, 190 and 225 K. The spectral distribution of these glow peaks is similar to that of the X-ray excited luminescence. The 280 nm band is associated with electron—hole recombination. The other four bands are associated with electron transitions among excited states of Co2+ produced by recombination of holes and Co+-ions created by X-irradiation.  相似文献   

3.
Thermoluminescence measurements of 80 K X-irradiated CaF2: Me (Me: Mn, Co, Ni) are reported. The spectral distributions of the glow peaks coincide with those of the X-ray excited luminescence. It has been previously attributed to Me2+ emission. The temperatures, activation energies and order of the kinetics for each peak are reported. They do not depend on the dopant and are the same as those given by other authors for the glow peaks in 80 K X-irradiated CaF2: RE. The observed emission is attributed to the de-excitation of Me2+ formed in an excited state by recombination of released holes with Me+ formed during low temperature X-irradiation. A similar mechanism has been proposed to explain the TL measurements in CaF2: RE.  相似文献   

4.
Time-resolved emission and excitation spectra as well as emission decay kinetics of CaF2, SrF2, BaF2 doped with HoF3 were investigated. Intensive emission bands near 168 nm, having long decay time, are caused by the spin-forbidden transitions from the 5d14f9 high-spin states to the ground 5I8 states of Ho3+ ions. Weak spin allowed 5d14f9(low-spin)-4f10 emission band at 158 nm was observed only in CaF2–Ho crystals. Spin allowed and spin-forbidden excitation bands were observed near 166 and 155 nm, respectively, in all studied crystals. Fast component of spin-forbidden emissions due to multiphonon relaxation to low-lying 4f10 Ho3+ level also was observed for all crystals.  相似文献   

5.
Spectroscopic investigations were performed on a single crystal of CaF2 doped with 0.05% Pr3+. Three different Pr3+ sites with different luminescent properties were identified. The 4f2 →4f15d1 excitation spectrum of the first site has a sharp maximum at 221.3 nm. Excitation in the 4f5d bands of this site yields strong 4f5d emissions in the UV/VIS part of the spectrum and also weaker intraconfigurational 4f2 emissions. By comparing the intraconfigurational 4f emissions and their decay times with data from the literature, these 4f5d bands are assigned to transitions on Pr3+ ions on a site with C4V symmetry. The fd excitation spectrum of the second site has a zero phonon line at 223.3 nm. Upon selective excitation in this band, only 4f5d emission is observed. Probably, these 4f5d bands correspond to Pr3+ ions on a Oh site. The third set of 4f5d bands has a 4f5d onset at 208 nm. By comparison of the luminescence spectra of the intraconfigurational 4f2 transitions with literature data, these transitions are assigned to Pr3+ on an L site. Excitation in these 4f5d band yields 1S0 emission followed by emission from the 3P0 state. The present results clarify some contradictions reported in the literature.  相似文献   

6.
According to stationary X-ray-excited luminescence spectra and thermally stimulated luminescence spectra of CaF2:Eu nanophosphors, it was found that Eu3+?→?Eu2+ conversion can occur during thermal annealing of fine-grained (d?=?25?nm) nanoparticles in the 200–800°C range, which is accompanied by an increase in their size within 40–189?nm. An important role of the exciton mechanism of Eu2+ luminescence excitation was revealed according to the temperature dependence of X-ray-excited luminescence spectra of CaF2:Eu nanoparticles of 114?nm size. The maximum of the X-ray-excited luminescence light output of CaF2:Eu nanophosphors in the Eu2+ ions’ emission band was traced out at 400–500°C annealing temperature and at the size of nanoparticles of 114–180?nm. The subsequent growth of the annealing temperatures, particularly in the 800–1000°C range, causes the reduction of X-ray-excited luminescence light output because of the increment of lattice defects’ concentration due to a sharp increase in the size of nanoparticles and their agglomeration.  相似文献   

7.
The optical absorption (OA) and photoluminescence (hereafter referred to as luminescence) studies were made on CaF2:Dy:Pb:Na single crystals (Dy—0.005 at%, Pb—0.188 at% and Na—0.007 at%) before and after γ-irradiation. The unirradiated crystal exhibited a strong OA band around 6.36 eV attributed to the ‘A’ band absorption of Pb2+ ions. The γ-irradiated crystal exhibited OA bands around 2.06, 3.28, 3.75 (broad shoulder) and 2.48 eV. The first three bands could be tentatively attributed to MNa centre when compared with that of the coloured CaF2:Na. The origin of 2.48 eV band was not explicitly known. Luminescence emission and excitation of Pb2+ and Dy3+ ions were negligible in the unirradiated crystal. Irradiated crystal exhibited a strong excitation spectrum with overlapping bands, due to different colour centres, in the UV-vis region for the 2.15 eV emission characteristic of Dy3+ ion. When excited, the absorbed energy (may be a part) was transferred from a colour centre to nearby Dy3+ ions and Dy3+ characteristic emission was observed. Exciting the irradiated crystal around 3.28 eV yielded emission at 2.56, 2.15 and 1.76 eV. The first two emission bands were due to Dy3+ ions. The excitation spectrum for the 1.76 eV emission showed two prominent bands around 2.02 and 3.08 eV and hence the emission was attributed to the MNa centre. The luminescence mechanism was described.  相似文献   

8.
Novel Eu3+, Ce3+ activated NaBa4(BO3)3 phosphors were synthesized by solid-state reactions. The excitation spectrum of NaBa4(BO3)3:Ce3+ consists of an intense band peaking at 350 nm and a weak band in the higher energy side, and the emission spectrum exhibits a blue band with a maximum at about 420 nm. The Eu3+ emission in NaBa4(BO3)3 consists of the transitions from 5D0 to 7FJ, and the excitation spectrum consists of broad excitation band peaking at 270 nm and some intense narrow lines. The optimum doped concentration, the critical distance of the concentration quenching, and the fluorescence lifetime have also been investigated.  相似文献   

9.
The strong dependence of the emission spectrum of YF3:Pr3+ on excitation source (228.8 nm, 213.9 nm or cathode rays) is ascribed to two different types of Pr3+ sites: one with a relatively strong crystal field and the other with a relatively weak crystal field. The presence of the latter is connected with the conversion of one short-wave UV (? 215 nm) photon into two visible photons. Two-photon luminescence of Pr3+ was also found for α-NaYF4 and LaF3, but not for CaF2 and BaF2 due to the too strong crystal field in these lattices. The occurrence of two-photon Pr3+ luminescence is compared with the intensity of the IR-excited green emission of the corresponding Yb3+, Er3+-activated lattices. The intensity of the Pr3+ luminescence at shortwave UV excitation (213.9 nm) is rather weak. Luminescence of reasonable efficiency is, however, observed on excitation with cathode rays.  相似文献   

10.
采用高温固相法制备了LiBaBO3:Eu2+绿色发光材料.测量了Eu2+浓度为1mol%时样品的激发与发射光谱,其发射光谱为双峰宽谱,主峰分别为482和507nm,与理论计算值符合很好;监测482nm发射峰时,对应激发光谱的峰值为287和365nm,监测507nm发射峰时,对应的激发峰为365和405nm.研究了Eu2+浓度对材料发射光谱的影响,结果显示,随Eu2+浓度的增大,蓝、绿发射峰均发生了  相似文献   

11.
A single crystal of cadmium tungstate (CdWO4) containing approximately 200 ppm of molybdenum was grown by the Czochralski method and then characterized in a series of optical absorption, photoluminescence (PL), photoluminescence excitation (PLE), and electron paramagnetic resonance (EPR) experiments. The Mo6+ ions substitute for W6+ ions and serve as recombination sites for electrons and holes when the crystal is exposed to ionizing radiation. A charge-transfer absorption band for the Mo6+ ions was observed near 320 nm at 10 K. The PL experiments, performed at low temperature with 325 nm excitation, showed a Mo-associated emission peaking near 680 nm. A direct correlation of the 680 nm emission and the 320 nm absorption band was established by the PLE data. When these doped CdWO4 crystals are exposed at low temperature either to light that is near or above the band gap or to X-rays, the Mo6+ ions can trap an electron and form stable Mo5+ ions. The EPR spectrum of the Mo5+ ions was observed at temperatures near 15 K, and a complete set of parameters describing the g matrix was obtained from an angular dependence study.  相似文献   

12.
A phosphate compound, BaMgP2O7 was co-doped with Eu2+ and Mn2+ for making a red-emitting phosphor. The phosphor was prepared by a solid-state reaction at high temperature. The photoluminescence properties were investigated under ultraviolet (UV) ray excitation. From a powder X-ray diffraction (XRD) analysis, the formation of single-phased BaMgP2O7 with a monoclinic structure was confirmed. In the photoluminescence spectra, the BaMgP2O7:Eu,Mn phosphor emits two distinctive colors: a blue band centered at 409 nm originating from Eu2+ and a red band at 615 nm caused by Mn2+. Also, efficient energy transfer from Eu2+ to Mn2+ in the BaMgP2O7:Eu,Mn system was verified by observing that the excitation spectra of BaMgP2O7:Eu,Mn emitted at 409 and 615 nm by Eu2+ emission and Mn2+ emission, respectively, are almost the same as that of BaMgP2O7:Eu monitored at 409 nm. The optimum concentration of Eu2+ ions in BaMgP2O7:0.015Eu excited at 309 nm wavelength is 1.5 mol%. With an increase of Mn2+ content up to 17.5 mol%, a systematic decline in the intensity of the excitation spectrum by Eu2+ and a gradual growth in the intensity of emission band by Mn2+ were observed. Accordingly, the optimum concentration of Mn2+ in BaMgP2O7:0.015Eu,Mn is 17.5 mol%. The maximum spectral overlap between emission of Eu2+ and excitation of Mn2+ is achieved in a composition of BaMgP2O7:0.015Eu,0.175Mn, resulting in considerable red-emission at 615 nm.  相似文献   

13.
采用高温固相法制备了Ca2SiO4:Dy3+发光材料.在365nm紫外光激发下,测得Ca2SiO4:Dy3+材料的发射光谱为一多峰宽谱,主峰分别位于486nm,575nm和665nm处;监测575nm发射峰,测得材料的激发光谱为一多峰宽谱,主峰分别位于331nm,361nm,371nm,397nm,435nm,461nm和478nm处.研究了Dy3+掺杂浓度对Ca2SiO4:Dy3+材料发射光谱及发光强度的影响,结果显示,随Dy3+浓度的增大,黄、蓝发射峰强度比(Y/B)逐渐增大,利用Judd-Ofelt理论解释了其原因;随Dy3+浓度的增大,Ca2SiO4:Dy3+材料发光强度先增大,在Dy3+浓度为4 mol%时到达峰值,而后减小,根据Dexter理论其浓度猝灭机理为电偶极-电偶极相互作用.研究了电荷补偿剂Li+,Na+和K+对Ca2SiO4:Dy3+材料发射光谱的影响,结果显示,不同电荷补偿剂下,随电荷补偿剂掺杂浓度的增大,Ca2SiO4:Dy3+材料发射光谱强度的演化趋势相同,即Ca2SiO4:Dy3+材料发射峰强度先增大后减小,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,对应Li+,Na+和K+时,浓度分别为4mol%,4mol%和3mol%. 关键词: 白光LED 2SiO4:Dy3+')" href="#">Ca2SiO4:Dy3+ 发光特性 电荷补偿  相似文献   

14.
Luminescence channels of manganese-doped spinel   总被引:1,自引:0,他引:1  
Two independent luminescence channels are observed from manganese-doped spinel Mn:MgAl2O4. The luminescence around 520 nm is assigned to transition from the lowest electronic excited state 4T1 to the ground state 6A1 of Mn2+ (3d)5 ion by analyzing the excitation spectrum and electron spin resonance measurement. The emission at 650 nm is triggered by the band edge excitation and is assigned similarly to the charge-transfer process associated with the manganese ion.  相似文献   

15.
For a LiF crystal containing F3 (R1, R2), F2, F3 +, F4 (N1, N2), F3 -, and F2 - colour centers the absorption and emission spectroscopic behaviour of the F3 - centers is studied. The absorption cross-section spectrum and the number density of F3 - centers are extracted from saturable absorption and transmission measurements. Additionally fluorescence quantum distribution measurements and fluorescence lifetime measurements are carried out to determine the stimulated emission cross-section spectrum and the fluorescence quantum yield of the F3 - centers. Fluorescence excitation spectroscopy reveals the presence of an absorption band with its absorption peak around 700 nm (called R 1 band) in addition to the ground-state to first excited-state F3 - center absorption band centered at 800 nm (called R 2). PACS 61.72.Ji; 78.40.Ha; 78.55.Fv  相似文献   

16.
The OA-modified CaF2: Eu nanocrystals that can be well dispersed in chloroform to form a clear solution were synthesized and characterized. The nanocrystals have a roughly spherical shape with particle diameter of about 10 nm. Possible mechanism was proposed to explain the growth process. Upon the excitation at 395 nm, the room-temperature emission spectrum of the nanocrystals in chloroform presents the characteristic transitions 5D07FJ of Eu3+ ions, with 5D07F2 (610 nm) transition as the most prominent group. The luminescence decay of Eu3+ ions in CaF2 nanocrystals was also investigated and two luminescence lifetimes of 737 μs (11.2%) and 2.08 ms (88.8%) were obtained.  相似文献   

17.
The optical properties of irradiated RbMgF3:Eu2+ and KMgF3:Eu2+ have been investigated. Previous research has shown that Eu2+ ions in unirradiated RbMgF3 give rise to broad band absorption around 250 nm and sharp intense line emission at 360 nm. When this material is irradiated little or no change occurs in the 250 nm absorption, but the lifetime of the Eu2+ 360 nm transition is reduced. In addition, new emission is observed at 680 nm. In the case of irradiated KMgF3:Eu2+ two new emission bands are observed at 600 and 800 nm. All of these transitions have short lifetimes and are not due to Eu3+ ions.  相似文献   

18.
RE3+-activated α- and β-CaAl2B2O7 (RE=Tb, Ce) were synthesized with the method of high-temperature solid-state reaction. Their VUV excitation and VUV-excited emission spectra are measured and discussed in the present article. The charge transfer band of Tb3+ and Ce3+ is respectively calculated to be at 151±2 and 159±3 nm. All the samples show an activator-independent excitation peak at about 175 nm and an emission peak at 350-360 nm ascribed to the host absorption and emission band, respectively.  相似文献   

19.
A red-emitting phosphor NaSrB5O9:Eu3+ was synthesized by employing a solid-state reaction (SSR) method. The structures of the phosphors were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and Raman studies. The band at ~282 nm in the excitation spectra indicated the charge transfer band (CTB) of B-O in the host, whereas the CTB of Eu-O was observed at ~275 nm for the NaSrB5O9:Eu3+ (Eu3+=1 at.%) phosphor, which was supported by diffuse reflectance spectroscopy (DRS) measurements. The photoluminescence (PL) measurements exhibited a strong red emission band centered at about 616 nm (5D07F2) under an excitation wavelength of 394 nm (7F05L6). Upon host excitation at 282 nm, the pristine NaSrB5O9 exhibited a broad UV emission centered at ~362 nm. The energy transfer from host to Eu3+ ions was confirmed from luminescence spectra, excited with a 355 nm Nd:YAG laser. In addition, the asymmetric ratios indicate a higher local symmetry around the Eu3+ ion in the host. The calculated CIE (Commission International de l′Eclairage) coordinates displayed excellent color purity efficiencies (around 99.7%) compared to other luminescent materials.  相似文献   

20.
The time resolved emission spectrum of the blue band of Ti:sapphire laser crystal has been investigated as a function of temperature (range 10–290 K) and UV (266 nm) laser excitation intensity. Two blue emission bands, centred at 420 nm and 460 nm, have been detected. The 420 nm band is attributed to Ti4+ centres whereas the 460 nm one is proposed to be due to Ti3+ ions. The evolution of the emission spectrum vs the UV excitation intensity has shown that the concentration of Ti4+ centres is increased under UV irradiation at the cost of the centres responsible for the 460 nm band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号