首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper, a review of the application of the Pr3+ inter- and intraconfigurational optical transitions in lighting and scintillator technologies is presented. The possibility of generating more than one visible photon for each incident ultraviolet photon can be realized with the Pr3+ intraconfigurational emission emanating from the Pr3+1S0 state. The development of such materials can significantly improve the overall energy conversion of fluorescent lamps. Scintillators based on the intraconfigurational optical transitions emanating from the Pr3+3P0 state has lead to the development and commercialization of the Gd2O2S:Pr3+ scintillator for application in computed tomography (CT). The development of fast scintillators for positron emission tomography (PET) and security applications can be realized with the efficient Pr3+ interconfigurational transitions (4f15d1→4f2) in a solid.  相似文献   

2.
Spectral-kinetic study of Pr3+ luminescence has been performed for LiLuF4:Pr(0.1 mol%) single crystal upon the excitation within 5-12 eV range at T=8 K. The fine-structure of Pr3+ 4f 2→4f 5d excitation spectra is shown for LiLuF4:Pr(0.1 mol%) to be affected by the efficient absorption transitions of Pr3+ ions into 4f 5d involving 4f 1 core in the ground state. Favourable conditions have been revealed in LiLuF4:Pr(0.1 mol%) for the transformation of UV-VUV excitation quanta into the visible range. Lightly doped LiLuF4:Pr crystals are considered as the promising luminescent materials possessing the efficient Pr3+3P0 visible emission upon UV-VUV excitation. The mechanism of energy transfer between Lu3+ host ion and Pr3+ impurity is discussed.  相似文献   

3.
The luminescence properties of Ce3+ in La3F3[Si3O9] are reported. Excitation and emission bands corresponding to 4f1→5d1 transitions of Ce3+ were identified. The center of gravity of the 5d states lies at remarkable high energy (43.2×103 cm−1) for Ce3+ in a silicate compound. This high value is attributed to the combined oxygen/fluoride coordination of the Ce3+ ion. Emission from the lowest 4f5d level to the 2F5/2 and 2F7/2 levels was found at 32.4×103 and 30.4×103 cm−1. These results are compared with literature data on silicates and fluorides. From the values found for Ce3+, predictions are made for the positions of the 4f5d bands of Pr3+ and Er3+ in La3F3[Si3O9]. For both ions, it is concluded that in this host lattice emission is expected from high lying 4fn energy levels.  相似文献   

4.
The photoluminescence and excitation spectra of Pr3+ activated LiLaP4O12 has been investigated in the 10-300 K temperature region. At all temperatures, the luminescence consists of optical transitions emanating from both the Pr3+ 4f15d1 and the 1S0 states. However, at low temperatures the emission spectrum is dominated by the intraconfiguration emission transitions emanating from the Pr3+1S0 state. With increasing temperature, there is an exchange of intensity between the two emitting states; emission transitions from the 1S0 state exhibit strong intensity quenching while the 4f15d1→4f2 emission transitions reveal intensity gain. These results are explained on the basis of thermal population of the 4f15d1 state by the 1S0 state. The energy barrier of 0.05 eV (403 cm−1) for the nonradiative process is determined from the temperature dependence of the 1S0 lifetime.  相似文献   

5.
ABSTRACT

The visible emission and vacuum ultraviolet excitation spectra of the series Cs2NaLnCl6 (Ln = Y, Nd, Sm, Eu, Tb, Er, Yb) and Cs2NaYCl6:Ln3+ (Ln = Sm, Er) have been recorded using synchrotron radiation at room temperature, and in some cases at 10 K. The excitation spectra comprise features associated with charge transfer, excitation from the valence to conduction band, and impurity bands. No d–f emissions were observed for these Ln3+ ions, so that the emission bands comprise intraconfigurational 4f N –4f N transitions and impurity bands, whose natures are discussed. Theoretical simulations of the f–d absorption spectra have been included. The comparison with data from the synchrotron at Desy enables a comprehensive account of the ground (or vibrationally excited ground for Ln2+) states of the Ln3+ 4f N , Ln3+ 4f N?15d, and Ln2+ 4f N+1 configurations relative to the valence and conduction bands of Cs2NaLnCl6, for which the band gaps are between 6.6 and 8.1 eV.  相似文献   

6.
This report presents the luminescence properties of Ce3+ and Pr3+ activated Sr2Mg(BO3)2 under VUV-UV and X-ray excitation. The five excitation bands of crystal field split 5d states are observed at about 46 729, 44 643, 41 667, 38 314 and 29 762 cm−1 (i.e. 214, 224, 240, 261 and 336 nm) for Ce3+ in the host lattice. The doublet Ce3+ 5d→4f emission bands were found at about 25 840 and 24 096 cm−1 (387 and 415 nm). The influence of doping concentration and temperature on the emission characteristics and the decay time of Ce3+ in Sr2Mg(BO3)2 were investigated. For Pr3+ doped samples, the lowest 5d excitation band was observed at about 42017 cm−1 (238 nm), a dominant band at around 35714 cm−1 (280 nm) and two shoulder bands were seen in the emission spectra. The excitation and emission spectra of Ce3+ and Pr3+ were compared and discussed. The X-ray excited luminescence studies show that the light yields are ∼3200±230 and ∼1400±100 photons/MeV of absorbed X-ray energy for the samples Sr1.86Ce0.07Na0.07Mg(BO3)2 and Sr1.82Pr0.09Na0.09Mg(BO3)2 at RT, respectively.  相似文献   

7.
Near-infrared to ultraviolet upconversion luminescence was observed in the Pr3+:Y2SiO5 crystal with 120 fs, 800 nm infrared laser irradiation. The observed emissions at around 270 nm and 305 nm could be assigned to 5d → 4f transitions of Pr3+ ions. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to simultaneous three-photon absorption induced upconversion luminescence.  相似文献   

8.
《Current Applied Physics》2018,18(4):437-446
Nanopowders of YPO4 phosphors with different Pr3+doping were successfully prepared by a sol gel method under different synthesis conditions. The crystallite size and strain show a strong dependence on the Pr3+ doping concentration and on the annealing temperature. By annealing at 300 °C one can obtain the xenotime structure of the pure YPO4. The crystallite size can be controlled by controlling the annealing temperature and it increases with increasing the annealing temperature. The room temperature inter-configurational 4f2 ↔ 4f5d and intra-configurational 4f2↔ 4f2 emission-excitation transitions spectra are measured and investigated. Upon 4f2 → 4f5d excitation transition, all the samples present broad intense emission bands attributed to 4f5d → 4f2 emission transitions and peaks in red region assigned to 1D23H4 transition as photon cascade emission phenomena (PCE). The presence of only 1D23H4 transition is discussed. In addition, the 1D2 energy level lifetimes as well as the refractive indexes were determined and discussed.  相似文献   

9.
In this paper we present and discuss results of detailed spectroscopy studies of Pr3+ luminescence from the (Ba,La)F2:0.2 m%Pr crystals under UV and VUV synchrotron excitation.We have measured time resolved emissions from the minor site Pr3+ in (Ba,La)F2:Pr at 10 and 300 K. The spectra clearly show the 1S0 emission from the Pr3+ ions in some low symmetry Pr-sites (we designate them La-sites) previously identified in higher concentration (0.3 m%Pr and more) crystals. However most of emission from the Pr activated (Ba,La)F2 crystals originates in Pr3+ ions in other sites which produce an efficient d-f emission. As demonstrated by excitation spectra, the emission from some of these sites (denoted as Ba-sites) closely resembles the d-f emission from BaF2.The La-site, time resolved and long delay emission spectra are dominated by hypersensitive transitions from the 1S0 and 3P0 levels to lower energy levels of the 4f2 configurations. Only these transitions contribute to the photon cascade emission desired for some mercury free phosphor applications.  相似文献   

10.
The silicates Ca3Sc2Si3O12, Ca3Y2Si3O12 and Ca3Lu2Si3O12, both undoped and doped with Pr3+ ions, have been synthesized by solid-state reaction at high temperature. The luminescence spectroscopy and the excited state dynamics of the materials have been studied upon VUV and X-ray excitation using synchrotron radiation. All doped samples have shown efficient 5d-4f emission upon direct VUV excitation of 5d levels, but only Ca3Sc2Si3O12:Pr3+ shows luminescence upon interband VUV or X-ray excitation. The VUV excited emission spectra of Ca3Y2Si3O12:Pr3+ and Ca3Lu2Si3O12:Pr3+ show features attributed to emission from two distinct sites accommodating the Pr3+ dopant. The decay kinetics of the Pr3+ 5d-4f emission in Ca3Sc2Si3O12:Pr3+ upon VUV excitation across the band gap are characterized by decay times in the range 25-28 ns with no significant rise after the excitation pulse. They appear to be faster upon X-ray irradiation than for VUV excitation. Weak afterglow components are attributed to defect luminescence.  相似文献   

11.
Spectroscopic properties of Ce3+ and Pr3+-doped AREP2O7-type alkali rare earth diphosphates (A=Na, K, Rb, Cs; RE=Y, Lu) have been investigated using VUV spectroscopy technique. Ce3+-doped samples show typical Ce3+ emission in the range of 325-450 nm. The strong host absorption band starting at around 160 nm indicates that the optical band gap of AREP2O7 hosts is at least 7.7 eV, and the host→Ce3+ energy transfer process is rather efficient. However, AREP2O7:Pr3+ samples show less efficient host→Pr3+ energy transfer. The direct Pr3+ 4f2→4f15d1 excitation, which are 12160±640 cm−1 higher respect to that of Ce3+, leads to strong 4f15d1→4f2 emission bands in the range of 230-325 nm but no obvious 4f2→4f2 emission lines.  相似文献   

12.
Different concentrations of Tb3+ ion-doped gadolinium aluminum garnet (GAG) nanophosphors have been synthesized by solvothermal reaction method and sintered at 1300 °C. The XRD patterns confirm that the GAG phosphors sintered at 1300 °C have a garnet structure with single cubic phase. The calculated crystallite size is about 92 nm. The SEM images of the phosphors show the spherical morphology agglomerated with many small particles. The luminescence properties of these phosphors have been carried out by the emission and excitation spectra along with lifetime measurements. The excitation spectra of GAG:Tb3+ phosphors consist of three broad bands due to the 4f8→4f75d1 transition and some sharp peaks due to the 4f8→4f8 transition. The emission spectra of the phosphors reveal two colors, such as blue due to 5D37FJ transitions and green due to the 5D47FJ transitions. The dynamics of the phosphors have been investigated by decay curves and the cross-relaxation process and is observed at 0.5 mol% Tb3+ concentration.  相似文献   

13.
In this work we present and discuss the dependence of ultraviolet (UV) photoluminescence of praseodymium ion (Pr3+):YAG crystalline waveguides, produced by liquid phase epitaxy, on activator concentration. Praseodymium level influence on UV fluorescence intensity, transition linewidth and dynamics was carefully investigated in order to better understand the nature of processes shaping both the interconfigurational d–f emission and intraconfigurational f–f emissions starting from the 3P0 excited state. The pathways and the role of interconfiguration cross-relaxation in quenching of the UV 4f5d emission are analyzed.  相似文献   

14.
Luminescence spectra of Ca0.65Pr0.35F2.35 solid solutions are studied. It is found that, depending on the excitation energy, different kinds of emission centers appear in these spectra. An interconfigurational 4f 15d1 →4f2 luminescence is typical for single Pr3+ ions in tetragonal sites. Data on the structure of the solid solutions show that the emission centers involved in 1S0 → 4f2 transitions can be attributed to Pr3+ ions contained in clusters.  相似文献   

15.
0.1, 1, and 3% Pr (with respect to Lu) doped LuLiF4 (Pr:LuLiF4) single crystals were grown by the micro-pulling-down (μ-PD) method. Transparency of the grown crystals was higher than 70% in the visible wavelength region with some absorption bands due to Pr3+ 4f-4f transitions. Intense absorption bands related with the Pr3+ 4f-5d transitions were observed at 190 and 215 nm. In radioluminescence spectra, Pr3+ 5d-4f emissions were observed at 220, 240, 340, and 405 nm. In the pulse height spectra recorded under 137Cs γ-ray excitation, the Pr 3% doped sample showed the highest light yield of 2050 photons/MeV and the scintillation decay time of it exhibited 23 and 72 ns also excited by 137Cs γ-ray.  相似文献   

16.
Luminescent properties of Pr3+ or Mn2+ singly doped and Pr3+, Mn2+ co-doped LaMgB5O10 are investigated by synchrotron radiation VUV light. When LaMgB5O10:Pr3+ is excited at185 nm, the photon cascade emission between 4f levels of Pr3+ is observed. In the excitation spectra of LaMgB5O10:Mn2+ monitoring the 615 nm emission of Mn2+, several excitation bands in a spectral range from 330 to 580 nm are recorded, among which the most intense band is centered at 412 nm (6A1g4Eg-4A1g). This band has considerable spectra overlap with the 410 nm emission (1S01I6) of Pr3+, which is favorable for energy transfer from Pr3+ to Mn2+. Such energy transfer is observed in the co-doped sample, converting the violet emission (410 nm) of Pr3+ into the red emission (615 nm) of Mn2+. The concentration dependence of transfer efficiency is also investigated.  相似文献   

17.
The luminescent characteristics of Pr3+-activated LaAlGe2O7 were investigated. In response to excitement using 448 nm blue light, the emission spectra involved most of the 3P03HJ transitions. The dominant emission came from the 3P03H4 transition at 487 nm. 1D2 fluorescence quenching was observed in highly doped samples and is related to the cross-relaxation processes among neighboring Pr3+ ions. In contrast with conventional Pr3+-activated phosphors, the extraordinary excitation spectra showed only intense f-f transition of Pr3+ ions, while the 4f-5d transition was eliminated. This is ascribed to photoionization. By analyzing absorption and excitation spectra, it is recognized that no efficient energy transfer occurs between Pr3+ and the host lattice in LaAlGe2O7.  相似文献   

18.
We report observation of fast and efficient VUV/UV luminescence from the mixed (Ba,La)F2:Er crystals. The broad bands, peaking at 162.5, 181.9, 194.2, 202.8, 216.1, 233.5 and 281.5 nm and decaying, at 10 and 293 K, with time constants of 46 and 35 ns respectively, are due to spin-allowed transitions from the low-spin (LS) state of the 4f105d configuration.We also observed a weak and slow broad band emission peaking at 170 nm due to the spin-forbidden transition from the high-spin (HS) state of the 4f105d configuration.While at room temperature the excitation into any of the three identified LS bands (J=8, 7 and 6) dominating the excitation spectrum yields fast VUV and UV emissions, at 10 K the excitation into higher lying J=7 and 6 bands generates slow and sharp line emissions. The positions of these lines fit energies of transitions originating from the 2G7/2 multiplet at 66140 cm−1. The emission from the 2G7/2 multiplet has been never, to the best of our knowledge, observed before.The efficient and fast VUV and UV emissions from the higher (LS, J=8) with almost no contribution from the lower (HS, J=8) level of the 4f105d configuration are possible because the modified crystal field in (Ba,La)F2 shifts the level of the (LS, J=8) state below the 2F5/2 multiplet which, therefore, does not contribute to nonradiative relaxation between the LS and HS levels.We conclude that the 2G7/2 and 2F5/2 levels have major impact on VUV and UV emissions from the Er3+ ion in (Ba,La)F2 contributing to complex emission pattern described in this report Their key role, elucidated by the VUV and UV luminescence spectroscopy, is consistent with predictions from a simple configuration coordinate model based on experimental results and calculations of the 4f11 energy levels.  相似文献   

19.
PrF3 as well as PrF3-LiF and PrF3-MgF2 mixtures were investigated by means of high-energetic excitation with synchrotron radiation. In the PrF3 emission spectrum bands due to the intra-configurational 4f24f2 transitions originating from the 1S0 level of the Pr3+ ion have been identified. The emission from the 3P0 multiplet is very weak due to non-radiative decay by cross-relaxation processes. Therefore, PrF3 is not an efficient direct cascade emitter. In the PrF3 excitation spectra in the ultraviolet/vacuum-ultraviolet spectral range, the 3H41S0 transition at 46858 cm-1 as well as broad bands due to the inter-configurational 4f24f5d transitions are observed. By comparison with data of Pr3+ doped YF3, the branching ratios of the emission transitions for PrF3 from the 1S0 were determined; these are 0.008, 0.075, 0.262, 0.023 and 0.629 for transitions 1S03H4, 3F4, 1G4, 1D2 and 1I6, respectively. For the polycrystalline PrF3-LiF and PrF3-MgF2 samples investigated by us, the measured emission and excitation spectra are nearly identical to those of PrF3. For polycrystalline PrF3-KMgF3 the observed spectra are superpositions of the PrF3 and Pr3+:KMgF3 spectra. PACS 42.70.-a; 78.55.-m; 78.55.Hx  相似文献   

20.
The upconverted VUV (185 nm) and UV (230 and 260 nm) luminescence due to 5d-4f radiative transitions in Nd3+ ions doped into a LiYF4 crystal has been obtained under excitation by 351/353 nm radiation from a XeF excimer laser. The maximum upconversion efficiency, defined as the ratio of intensity for 5d-4f luminescence to overall intensity for 5d-4f and 4f-4f luminescence from the 4D3/2 Nd3+ level, has been estimated to be about 70% under optimal focusing conditions for XeF laser radiation. A redistribution of intensity between three main components of 5d-4f Nd3+ luminescence is observed under changing the excitation power density, which favors the most long-wavelength band (260 nm) at higher excitation density level. The effect is interpreted as being due to excited state absorption of radiation emitted. The upconverted VUV and UV luminescence from the high-lying 2F(2)7/2 4f level of Er3+ doped into a LiYF4 crystal has also been obtained under XeF-laser excitation the most intense line being at 280 nm from the spin-allowed transition to the 2H(2)11/2 4f level of Er3+, but the efficiency of upconversion for Er3+ emission is low, less than 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号