首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, silicon nanocrystal-rich Al2O3 film has been prepared by co-sputtering a silicon and alumina composite target and subsequent annealing in N2 atmosphere. The microstructure of the film has been characterized by infrared (IR) absorption, Raman spectra and UV-absorption spectra. Typical nanocrystal and interface defects related photoluminescence with the photon energy of 1.54 (IR band) and 1.69 eV (R band) has been observed by PL spectrum analysis. A post-annealing process in oxygen atmosphere has been carried out to clarify the emission mechanism. Despite the red shift of the spectra, enhanced emission of the 1.69 eV band together with the weak emission phenomenon of the 1.54 eV band has been found after the post-annealing. The R band is discussed to originate from silicon nanocrystal interface defects. The IR band is concluded to be a coupling effect between electronic and vibrational emissions.  相似文献   

2.
Tin dioxide (SnO2) nanoparticles having 3 nm size were synthesized by irradiating pure tin metal using high power Nd:YAG laser in deionized water. Formation of nano-SnO2 crystallites was confirmed by X-ray diffraction (XRD) and AFM study. UV-vis absorption spectral studies showed a peak at 240 nm. FTIR spectrum showed a band in the range of 400-700 cm−1 which was assigned to Sn-O antisymmetric vibrations. Photoluminescence spectrum of synthesized SnO2 nanoparticles showed peak corresponding to 3.175, 2.901 and 2.613 eV respectively.  相似文献   

3.
The infrared (IR) photoluminescence (PL) emission of spark-processed silicon (sp-Si) was investigated. A broad and strong room temperature PL peak in the 945 nm (1.31 eV) spectral range was observed when sp-Si was excited with an argon laser. This peak is different from the PL commonly reported for anodically etched porous silicon and other silicon-based materials. The PL intensity increases substantially after annealing sp-Si between 350 and 500 °C in air after which it decreases again. The PL wavelength is observed to peak at 1010 nm by annealing sp-Si near 450 °C. It was further found that the most efficient PL occurs for a Si/O ratio of 0.3, for a small spark gap of about 1 mm, and for spark-processing times in the 15-60 min range.A model for the IR PL is proposed which mirrors that for visible PL. Specifically, it is proposed that the electrons which have been pumped by the laser from the ground state into a broad quasi-absorption band (or closely spaced absorption lines between 1.7 and 2.3 eV) revert back to lower IR levels at 1.31 eV by a non-radiative transition from where they revert radiatively to the ground state by emitting the observed 945 nm light.  相似文献   

4.
We report formation of colloidal suspension of zinc oxide nanoparticles by pulsed laser ablation of a zinc metal target at room temperature in different liquid environment. We have used photoluminescence, atomic force microscopy and X-ray diffraction to characterize the nanoparticles. The sample ablated in deionized water showed the photoluminescence peak at 384 nm (3.23 eV), whereas peaks at 370 nm (3.35 eV) were observed for sample prepared in isopropanol. The use of water and isopropanol as a solvent yielded spherical nanoparticles of 14-20 nm while in acetone we found two types of particles, one spherical nanoparticles with sizes around 100 nm and another platelet-like structure of 1 μm in diameter and 40 nm in width. The absorption peak of samples prepared in deionized water and isopropanol are seen to be substantially blue shifted relative to that of the bulk zinc oxide due to the strong confinement effect. The technique offers an alternative for preparing the nanoparticles of active metal.  相似文献   

5.
The electrochemical activity of an electrode of carbon nanotubes (CNTs) attached with TiO2 nanoparticles was investigated. A chemical-wet impregnation was used to deposit different TiO2 particle densities onto the CNT surface, which was chemically oxidized by nitric acid. Transmission electron microscopy showed that each TiO2 nanoparticle has an average size of 30-50 nm. Nitrogen physisorption measurement indicated that the porosity of CNTs is partially hindered by some titania aggregations at high surface coverage. Cyclic voltammetry measurements in 1 M H2SO4 showed that (i) an obvious redox peak can be found after the introduction of TiO2 and (ii) the specific peak current is proportional to the TiO2 loading. This enhancement of electrochemical activity was attributed to the fact that TiO2 particles act as a redox site for the improvement of energy storage. According to our calculation, the electrochemical capacitance of TiO2 nanocatalysts in acid electrolyte was estimated to be 180 F/g. Charge-discharge cycling demonstrated that the TiO2-CNT composite electrode maintains stable cycleability of over 200 cycles.  相似文献   

6.
Undoped β-Ga2O3 single crystals were grown using the floating zone technique under a pressure of 2 atm oxygen. Luminescence spectra of the crystals were measured with steady-state X-ray (<15 keV) and UV (258 nm, 4.8 eV) sources. The X-ray excitation produced a spectrum with a peak at 390 nm (3.2 eV) whereas the UV excited spectrum had a peak at 430 nm (2.9 eV). The luminescence rise and decay were also examined by using picosecond X-ray and sub-picosecond UV pulses. It was found that the X-ray pulse excitation gave a slower rise and a faster decay of the luminescence compared with the UV pulse excitation. These results suggest that X-ray excitation generates high energy electrons, building up luminescent states until those electrons lose their kinetic energies, giving rise to the formation of local hot spots in the gallium oxide crystals.  相似文献   

7.
Blue light emitting chromophores have been separated from silica spheres by soaking them into acetone for 120 days. The luminescent chromophores were not obtained from other solvents, including ether, methanol, ethanol, 2-propanol, chloroform and tetrahydrofuran. According to the Fourier transform infrared spectrum, the luminescent material is composed of C–OH, –CH2, –CH3, C=O, and Si–O–Si. UV–visible absorption peak of the chromophore is at 5.17 eV (240 nm). Field emission scanning electron microscope images show small cracks on the surface of aged spheres. The luminescence peak was at 2.81 eV (441 nm) for excitation energy between 3.88 and 3.35 eV and slightly shifted toward lower energy for excitation energy lower than 3.35 eV. The deconvoluted luminescent spectrum shows two emission bands at 3.08 and 2.74 eV, which are well-matched the oxygen deficient center model. Compared to the absorption peak (5.17 eV) and the emission peak (2.81 eV), large Stokes shift (2.36 eV) is observed.  相似文献   

8.
Optical and magneto-optical properties of three-dimensional magnetic photonic crystals, based on magnetite Fe3O4 embedded into an opal film matrix, are investigated in both transmission and reflection. A strong enhancement of the polar Kerr effect and a modification of the Faraday effect have been found near the photonic band-gap of about 1.8 eV. Unusual changes of hysteresis curves and their dependence on photon energy have been revealed in the spectral region where the magneto-optical effect reverses its sign. This phenomenon has been explained by two types of magnetite particles inside the opal matrix having different coercive fields and spectral behaviour.  相似文献   

9.
Three-dimensional face-centered-cubic (fcc) photonic crystals (PhCs) are fabricated on quartz substrate using vertical deposition technique, and followed by annealing in a temperature range of 200-700 °C. The monodispersed SiO2 microspheres with a diameter of 220 nm in colloidal solution are synthesized using tetraethylorthosilicate as a precursor material. The as grown opal structure exhibits a strong photonic band gap (PBG) around 450 nm in the transmission spectrum. We find that the position of PBG peak in the spectrum is relevant to incident angle of light. Moreover, it is very sensitive to annealing temperature. It quickly shifts to short wavelength direction with annealing temperature increasing. The effect results from the decrease in refraction index due to the moisture evaporation in silica microspheres.  相似文献   

10.
The laser ablation of Ge and GaAs targets placed in water and ethanol was carried out using the fundamental radiation of nanosecond Nd:YLF laser. The results of preparation and the optical and nonlinear optical characterization of the Ge and GaAs nanoparticle suspensions are presented. The considerable shift of the band gap energy of the nanoparticles compared to the bulk semiconductors was observed. The distribution of nanoparticle sizes was estimated in the range of 1.5-10 nm on the basis of the TEM and spectral measurements. The nonlinear refractive indices and nonlinear absorption coefficients of Ge and GaAs nanoparticles were defined by the z-scan technique using second harmonic radiation of picosecond Nd:YAG laser (λ = 532 nm).  相似文献   

11.
Single-crystalline Bi2S3 nanowires, with diameters in the range of 80-200 nm and lengths up to tens of micrometers, have been successfully synthesized through surfactant micelle-template inducing reaction at ambient-pressure and low-temperature. The synthetic route is simple, effective and can provide great opportunities for both fundamental and technological applications. The optical properties of the Bi2S3 nanowires with different diameters were firstly examined by means of photoluminescence spectroscopy at room temperature. The representative photoluminescence spectrum exhibits a great blue-shift from the band gap of 1.30 eV of bulk Bi2S3 to high energy of 1.44 eV, which indicated that these nanostructures showed quantum confinement effects.  相似文献   

12.
Mesoporous α-Fe2O3-pillared titanate nanocomposites have been successfully synthesized through an exfoliation−restacking route. Powder X-ray diffraction and N2 adsorption-desorption isotherms revealed that the α-Fe2O3 pillared titanate has an interlayer distance of 3.27 nm, a specific surface area of 66 m2/g and an average pore size of 7.6 nm, suggesting the formation of a mesoporous pillared structure. UV-vis diffuse reflectance spectra show a red shift, indicative of a narrow band gap energy of ∼2.1 eV compared to the host layered titanate, which is essential in creating a visible light photocatalytic activity. The results of degradation of rhodamine B reveal that the present pillared mesoporous composites exhibit better photocatalytic activities than those of the pristine materials under visible irradiation, based on the band gap excitement and the dye-sensitized path, originated from their high surface area, mesoporosity and the electronic coupling between the host and the guest components.  相似文献   

13.
The present study investigates the optical behavior of composite nanostructured DLC based films and functional coatings. Diamond-like carbon (DLC) thin films were synthesized by electrodeposition method onto SnO2-coated glass substrates using an electrolyte of a mixture of acetic acid and water. Nanoparticles of nickel were then introduced into the DLC matrix. Morphology of the metal incorporated thin films and distribution of nanoparticles were studied by SEM; continuous homogeneous distribution of the particles was observed. Raman spectroscopy showed additional peaks in addition to the peaks due to DLC matrix. FTIR spectra revealed new peaks in the lower wave number region due to metal inclusion. UV-vis transmittance studies were performed to calculate the band gap of the samples. The estimated band gap from the Tauc relation was found to vary from 2.63 eV for the virgin DLC to 1.48 eV for the metal incorporated DLC.  相似文献   

14.
Well-aligned ZnO nanorod arrays have been successfully fabricated directly on anatase TiO2 nanoparticle films via low-temperature hydrothermal processes. The effects of the reactive time, temperature and reactant concentration on the growth of the as-prepared ZnO crystals are investigated in detail, and the possible mechanisms of crystal ZnO nanorod growth are also suggested. The results show that the low reactant concentration is in favor of the increase in the aspect ratio of crystal ZnO nanorods with weak orientation, while the long reactive time and high reactant concentration are useful to prepare well-aligned crystal ZnO nanorod arrays. Interestingly, the typically constructed composite films exhibit superhydrophilic characteristic without UV irradiation. Moreover, a strong near-ultraviolet PL band centering at about 385 nm and a weak green PL band centering at about 525 nm can appear at the room temperature.  相似文献   

15.
We study the superconducting electronic structures of Nb3Al and MgB2 using high-resolution spectroscopy. The obtained spectrum of Nb3Al measured below Tc shows clear opening of the superconducting gap with a sharp pile up in the density of states and a shift of the leading edge. In addition, the spectrum shows a peak-dip-hump line shape expected from the strong-coupling theory. On the other hand, for MgB2, the superconducting-state spectrum measured at 5.4 K shows a coherent peak with a shoulder structure, in sharp contrast to that expected from a single isotropic gap. The superconducting spectral shape of MgB2 can be explained in terms of a multicomponent gap.  相似文献   

16.
Electroluminescence (EL) properties of Si-based light emitting diodes with β-FeSi2 particles active region grown by reactive deposition epitaxy are investigated. EL intensity of β-FeSi2 particles versus excitation current densities has different behaviors at 8, 77 K and room temperature, respectively. The EL peak energy shifted from 0.81 to 0.83 eV at 77 K with the increase of current density from 1 to 70 A/cm2. Temperature dependence of the peak energy can be well fitted by semi-empirical Varshni's law with the parameters of α=4.34 e-4 eV/K and β=110 K. These results indicate that the EL emission originates from the band-to-band transition with the band gap energy of 0.824 eV at 0 K.  相似文献   

17.
CdTe nanocrystals were grown from commercially available RG850 Schott filter glass by two-step heat-treatment process which almost doubles the particle to matrix volume fraction. A calculation shows that a quantized-state effective mass model in the strong confinement regime might be used to deduce the average radius for the nanocrystals larger than 2 nm in radius from the energetic position of the first exciton peak in optical absorption spectrum. Size-induced shift of ∼360 meV in the first exciton peak position was observed. The steady state photoluminescence spectra exhibit a broad band red shifted relative to the first exciton band, which indicates the existence of shallow trap states. The non-linear optical properties of CdTe nanocrystals were studied by room temperature resonant photoabsorption spectroscopy. The differential absorption spectra had three-lobed structure whose size-dependent evolution was explained by bleaching of the absorption, red shift and broadening in the Gaussian absorption band used to fit the first exciton peak. A maximum red shift of 2.32 meV for the average nanocrystal radius of 4.65 nm was estimated by fitting the photomodulation spectra with a combination of first and second derivative Gaussian absorption bands. We presume that the red shift is induced by the electric field of trapped charges in surface states. Internal electric field strengths of 23 and 65 kV/cm were predicted for the average nanocrystal radii of 3.95 and 4.65 nm, respectively, with the help of second-order perturbation theory in the strong confinement limit.  相似文献   

18.
Photoluminescence (PL) measurements performed on as-grown, hydrogenated, and annealed n-type ZnO bulk samples investigated the origins of their yellow (2.10 eV) and green (2.43 eV) emission bands. After hydrogenation, the defect-related peak at 2.10 eV was no longer present in the room temperature PL spectrum, the peak intensity at 2.43 eV was unchanged, and the intensity of the emission peak at 3.27 eV increased significantly. These results indicate that yellow band emission is due to oxygen vacancies, as the emission peak at 2.10 eV disappears when hydrogen atoms passivate these vacancies. The emission peak at 2.43 eV originates from complexes between oxygen vacancies and other crystal defects. We discuss the shallow donor impurities arising due to these hydrogen atoms in the ZnO bulk sample.  相似文献   

19.
Ag-doping TiO2 composite nanotubes (Ag-TNTs) were synthesized by alkaline fusion followed by hydrothermal treatment. The microstructure and morphology of the materials were characterized by XRD, TEM, XPS, SPS (surface photovoltage spectroscopy), FISPS (electric field-induced surface photovoltage spectroscopy) and Raman spectroscopy. First-principles calculations based on density-functional theory (DFT) showed the formation of several impurity levels near the top of the valence band in the band gap (Eg) of rutile TiO2 due to Ag doping. A “double junction” is proposed, involving a Schottky junction and p–n junction (denoted as “Ag-p–n junction”) occurring between the Ag particles and the nanotube surface, as well as forming inside TiO2 nanotubes, respectively. The strongly built-in electric field of the junctions promotes the separation of photo-holes and photoelectrons, enhancing the photocatalytic efficiency. XRD results indicated that the composite Ag-TNTs exist as a mixture of anatase and rutile phases. XPS results showed that Ti4+ is the primary state of Ti. Raman spectral analysis of Ag-TNTs revealed the presence of a new peak at 271 cm−1. The red-shift of the absorption light wavelength of Ag-TNTs was 0.16 eV (20 nm) due to a considerable narrowing of Eg by the existing impurity levels.  相似文献   

20.
The characteristics of high-temperature ionic thermocurrent (HT ITC) in CaF2 doped with different sodium concentrations were studied by the Teflon-insulated electrode ITC method. It was shown that, with increasing sodium concentration, the HT ITC band moved toward a Na+-FV dipole band with a peak at 162 K. The results of analyses of the HT ITC spectra using an equivalent electric circuit proved that the activation energy of space charge migration related to HT ITC was also strongly dependent on the doped sodium concentrations if varied from 0.94 to 0.46 eV with increasing sodium concentration in our ITC study. In addition, the broadening of the Na+-FV dipole band was observed in 3 nominal mole% NaF-doped CaF2, which was accompanied by a considerable decrease of the activation energy from 0.46 to 0.29 eV without showing marked temperature shifts of the peak ITC bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号