首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For functions satisfying the boundary conditions
, the following inequality with sharp constants in additive form is proved:
wheren≥2, 0≤1≤n−2,−1≤m≤1, m+1≤n−3, and1≤p,q,r≤∞. Translated fromMatematicheskie Zametki, Vol. 62, No. 5, pp. 712–724, November, 1997. Translated by N. K. Kulman  相似文献   

2.
Precise estimate of total deficiency of meromorphic derivatives   总被引:7,自引:0,他引:7  
Let f(z) be a transcendental meromorphic function in the finite plane andk be a positive integer. Then we have . Moreover, if the order of f(z) is finite, then we also have , where δ(a, f(k)) denotes the deficiency of the valuea with respect to f(k) and θ(∞,f) is the ramification index of ∞ with respect tof.  相似文献   

3.
For functionsf which have an absolute continuous (n–1)th derivative on the interval [0, 1], it is proved that, in the case ofn>4, the inequality
  相似文献   

4.
Let u be a weak solution of (-△)mu = f with Dirichlet boundary conditions in a smooth bounded domain Ω  Rn. Then, the main goal of this paper is to prove the following a priori estimate:‖u‖ Wω2 m,p(Ω) ≤ C ‖f‖ Lωp (Ω),where ω is a weight in the Muckenhoupt class Ap.  相似文献   

5.
We investigate limiting behavior as γ tends to ∞ of the best polynomial approximations in the Sobolev-Laguerre space WN,2([0, ∞); e−x) and the Sobolev-Legendre space WN,2([−1, 1]) with respect to the Sobolev-Laguerre inner product
and with respect to the Sobolev-Legendre inner product
respectively, where a0 = 1, ak ≥0, 1 ≤kN −1, γ > 0, and N ≥1 is an integer.  相似文献   

6.
7.
Explicit formulas are obtained for the maximum possible values of the derivatives f (k)(x), x ∈ (−1, 1), k ∈ {0, 1, ..., r − 1}, for functions f that vanish together with their (absolutely continuous) derivatives of order up to ≤ r − 1 at the points ±1 and are such that $ \left\| {f^{\left( r \right)} } \right\|_{L_2 ( - 1,1)} \leqslant 1 $ \left\| {f^{\left( r \right)} } \right\|_{L_2 ( - 1,1)} \leqslant 1 . As a corollary, it is shown that the first eigenvalue λ 1,r of the operator (−D 2) r with these boundary conditions is $ \sqrt 2 $ \sqrt 2 (2r)! (1 + O(1/r)), r → ∞.  相似文献   

8.
For functions f which are bounded throughout the plane R2 together with the partial derivatives f(3,0) f(0,3), inequalities $$\left\| {f^{(1,1)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} ,\left\| {f_e^{(2)} } \right\| \leqslant \sqrt[3]{3}\left\| f \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left( {\left\| {f^{(3,0)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_1 } \right| + \left\| {f^{(0,3)} } \right\|^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$3$}}} \left| {e_2 } \right|} \right)^2 ,$$ are established, where ∥?∥denotes the upper bound on R2 of the absolute values of the corresponding function, andf fe (2) is the second derivative in the direction of the unit vector e=(e1, e2). Functions are exhibited for which these inequalities become equalities.  相似文献   

9.
We extend the results for 2-D Boussinesq equations from ℝ2 to a bounded domain Ω. First, as for the existence of weak solutions, we transform Boussinesq equations to a nonlinear evolution equation U t + A(t, U) = 0. In stead of using the methods of fundamental solutions in the case of entire ℝ2, we study the qualities of F(u, υ) = (u · ▽)υ to get some useful estimates for A(t, U), which helps us to conclude the local-in-time existence and uniqueness of solutions. Second, as for blow-up criterions, we use energy methods, Sobolev inequalities and Gronwall inequality to control and by and . Furthermore, can control by using vorticity transportation equations. At last, can control . Thus, we can find a blow-up criterion in the form of .   相似文献   

10.
The family of α-connections ∇(α) on a statistical manifold equipped with a pair of conjugate connections and is given as . Here, we develop an expression of curvature R (α) for ∇(α) in relation to those for . Immediately evident from it is that ∇(α) is equiaffine for any when are dually flat, as previously observed in Takeuchi and Amari (IEEE Transactions on Information Theory 51:1011–1023, 2005). Other related formulae are also developed. The work was conducted when the author was on sabbatical leave as a visiting research scientist at the Mathematical Neuroscience Unit, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.  相似文献   

11.
Suppose that a lower triangular matrix μ:[μ m (n) ] defines a conservative summation method for series, i.e.,
and the sequence (ρ m ,m ∈ ℤ0), is bounded away from zero. Then the trigonometric series is the Fourier series of a functionfL p ( ), wherep ε ]1; ∞[, if and only if the sequence ofp-norms of its μ-means is bounded:
In the case of the Fejér method, we have the test due to W. and G. Young (1913). In the case of the Fourier method, we obtain the converse of the Riesz theorem (1927). Translated fromMatematicheskie Zametki, Vol. 62, No. 5, pp. 677–686, November, 1997. Translated by N. K. Kulman  相似文献   

12.
Let Θ be a bounded open set in ℝ n , n ⩾ 2. In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of K such that
$ \sup \left\{ {\int_\Omega {\exp \left( {\left( {\frac{{\left| {f(x)} \right|}} {K}} \right)^{{n \mathord{\left/ {\vphantom {n {(n - 1)}}} \right. \kern-\nulldelimiterspace} {(n - 1)}}} } \right):f \in W_0^{1,n} (\Omega ),\left\| {\nabla f} \right\|_{L^n } \leqslant 1} } \right\} < \infty $ \sup \left\{ {\int_\Omega {\exp \left( {\left( {\frac{{\left| {f(x)} \right|}} {K}} \right)^{{n \mathord{\left/ {\vphantom {n {(n - 1)}}} \right. \kern-\nulldelimiterspace} {(n - 1)}}} } \right):f \in W_0^{1,n} (\Omega ),\left\| {\nabla f} \right\|_{L^n } \leqslant 1} } \right\} < \infty   相似文献   

13.
In this paper we study tree martingales and proved that if 1≤α,β〈∞,1≤p〈∞ then for every predictable tree martingale f=(ft,t∞T)and E[σ^(P)(f)]〈∞,E[S^(P)(f)]〈∞,it holds that ‖(St^(p)(f),t∈T)‖M^α∞≤Cαβ‖f‖p^αβ,‖(σt^(p)(f),t∈T)‖M^α,β‖f‖P^αβ,where Cαβ depends only on α and β.  相似文献   

14.
Let U n be the unit polydisk in C n and S be the space of functions of regular variation. Let 1 ≤ p < ∞, ω = (ω 1, ..., ω n ), ω j S(1 ≤ jn) and fH(U n ). The function f is said to be in holomorphic Besov space B p (ω) if
$ \left\| f \right\|_{B_p (\omega )}^p = \int_{U^n } {\left| {Df(z)} \right|^p \prod\limits_{j = 1}^n {\frac{{\omega _j (1 - |z_j |)}} {{(1 - |z_j |^{2 - p} )}}} dm_{2n} (z) < + \infty } $ \left\| f \right\|_{B_p (\omega )}^p = \int_{U^n } {\left| {Df(z)} \right|^p \prod\limits_{j = 1}^n {\frac{{\omega _j (1 - |z_j |)}} {{(1 - |z_j |^{2 - p} )}}} dm_{2n} (z) < + \infty }   相似文献   

15.
We prove that if is the error of a simple quadrature formula and ω(ε, δ)1 is the integral modulus of continuity, then, for any δ ≥/π andn,r = 1, 2, …, the following equality is true: whereD r is the Bernoulli kernel.  相似文献   

16.
We consider the weighted Hardy integral operatorT:L 2(a, b) →L 2(a, b), −∞≤a<b≤∞, defined by . In [EEH1] and [EEH2], under certain conditions onu andv, upper and lower estimates and asymptotic results were obtained for the approximation numbersa n(T) ofT. In this paper, we show that under suitable conditions onu andv, where ∥wp=(∫ a b |w(t)|p dt)1/p. Research supported by NSERC, grant A4021. Research supported by grant No. 201/98/P017 of the Grant Agency of the Czech Republic.  相似文献   

17.
Let an≥0 and F(u)∈C [0,1], Sikkema constructed polynomials: , ifα n ≡0, then Bn (0, F, x) are Bernstein polynomials. Let , we constructe new polynomials in this paper: Q n (k) (α n ,f(t))=d k /dx k B n+k (α n ,F k (u),x), which are called Sikkema-Kantorovic polynomials of order k. Ifα n ≡0, k=1, then Qn (1) (0, f(t), x) are Kantorovič polynomials Pn(f). Ifα n =0, k=2, then Qn (2), (0, f(t), x) are Kantorovič polynomials of second order (see Nagel). The main result is: Theorem 2. Let 1≤p≤∞, in order that for every f∈LP [0, 1], , it is sufficient and necessary that , § 1. Let f(t) de a continuous function on [a, b], i. e., f∈C [a, b], we define[1–2],[8–10]: . As usual, for the space Lp [a,b](1≤p<∞), we have and L[a, b]=l1[a, b]. Letα n ⩾0and F(u)∈C[0,1],Sikkema-Bernstein polynomials [3] [4]. The author expresses his thanks to Professor M. W. Müller of Dortmund University at West Germany for his supports.  相似文献   

18.
LetF andG denote two distribution functions defined on the same probability space and are absolutely continuous with respect to the Lebesgue measure with probability density functionsf andg, respectively. A measure of the closeness betweenF andG is defined by: . Based on two independent samples it is proposed to estimate λ by , whereF n (x) andG n (x) are the empirical distribution functions ofF(x) andG(x) respectively and and are taken to be the so-called kernel estimates off(x) andg(x) respectively, as defined by Parzen [16]. Large sample theory of is presented and a two sample goodness-of-fit test is presented based on . Also discussed are estimates of certain modifications of λ which allow us to propose some test statistics for the one sample case, i.e., wheng(x)=f 0 (x), withf 0 (x) completely known and for testing symmetry, i.e., testingH 0:f(x)=f(−x).  相似文献   

19.
In this paper,we obtain the boundedness of the parabolic singular integral operator T with kernel in L(logL)1/γ(Sn-1) on Triebel-Lizorkin spaces.Moreover,we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q(f) from ∥f∥ F˙p0,q(Rn) into Lp(Rn).  相似文献   

20.
This paper is a continuation of [3]. Suppose f∈Hp(T), 0σ r σ f,σ=1/p?1. When p=1, it is just the partial Fourier sums Skf. In this paper we establish the sharp estimations on the degree of approximation: $$\left\{ { - \frac{1}{{logR}}\int\limits_1^R {\left\| {\sigma _r^\delta f - f} \right\|_{H^p (T)}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqq C{\mathbf{ }}{}_p\omega \left( {f,{\mathbf{ }}( - \frac{1}{{logR}})^{1/p} } \right)_{H^p (T)} ,0< p< 1,$$ and \(\frac{1}{{\log L}}\sum\limits_{k - 1}^L {\frac{{\left\| {S_k f - f} \right\|_H 1_{(T)} }}{k} \leqq Cp\omega (f; - \frac{1}{{\log L}})_H 1_{(T)} } \) Where $$\omega (f,{\mathbf{ }}h)_{H^p (T)} \begin{array}{*{20}c} { = Sup} \\ {0 \leqq \left| u \right| \leqq h} \\ \end{array} \left\| {f( \cdot + u) - f( \cdot )} \right\|_{H^p (T).} $$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号