首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Proteomic analysis of the Arabidopsis thaliana cell wall   总被引:1,自引:0,他引:1  
With the completion of the Arabidopsis genome, many hypothetical proteins have been predicted without any information on their expression, subcellular localisation and function. We have performed proteomic analysis of proteins sequentially extracted from enriched Arabidopsis cell wall fractions and separated by two-dimensional gel electrophoresis (2-DE). The proteins were identified by peptide mass fingerprinting using matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) mass spectrometry and genomic database searches. This is part of a targeted exercise to establish the entire Arabidopsis secretome database. We report evidence for new proteins of unknown function whose existence had been predicted from genomic sequences and, furthermore, localise them to the cell wall. In addition, we observed an unexpected presence in the cell wall preparations of proteins whose known biochemical activity has never been associated with this compartment hitherto. We discuss the implications of these findings and present results suggesting a possible involvement of cell wall kinases in plant responses to pathogen attack.  相似文献   

3.
将最近从地瓜中提出来的低分子量紫色酸性磷酸酶(smPAP)基因克隆到GST融合蛋白表达载体pGEX-2T中,在大肠杆菌BL21codon plus中进行表达,用表达的融合蛋白免疫兔子产生多克隆抗体,用抗血清在昆虫细胞中表达的smPAP和地瓜提取液中分离纯化的PAP进行检测,产生了良好的交叉反应。  相似文献   

4.
5.
Hoshi  Masako  Ohki  Yu  Ito  Keisuke  Tomita  Taisuke  Iwatsubo  Takeshi  Ishimaru  Yoshiro  Abe  Keiko  Asakura  Tomiko 《BMC biochemistry》2013,14(1):1-8

Background

The ubiquitin ligase COP1, COnstitutively Photomorphogenic 1, functions in many biological responses in mammalian cells, but its downstream pathway remains unclear.

Results

Here, we identified FIP200, a key regulator of mammalian autophagy, as a novel COP1-interacting protein by yeast two-hybrid screening. The interaction was confirmed by a GST-pulldown assay. Split-GFP analysis revealed that interaction between COP1 and FIP200 predominantly occurred in the cytoplasm and was enhanced in cells treated with UV irradiation. Different forms of FIP200 protein were expressed in cultured mammalian cells, and ectopic expression of COP1 reduced one of such forms.

Conclusions

These data suggest that COP1 modulates FIP200-associated activities, which may contribute to a variety of cellular functions that COP1 is involved in.  相似文献   

6.
Plant volatiles typically occur as a complex mixture of low-molecular weight lipophilic compounds derived from different biosynthetic pathways, and are seemingly produced as part of a defense strategy against biotic and abiotic stress, as well as contributing to various physiological functions of the producer organism. The biochemistry and molecular biology of plant volatiles is complex, and involves the interplay of several biochemical pathways and hundreds of genes. All plants are able to store and emit volatile organic compounds (VOCs), but the process shows remarkable genotypic variation and phenotypic plasticity. From a physiological standpoint, plant volatiles are involved in three critical processes, namely plant–plant interaction, the signaling between symbiotic organisms, and the attraction of pollinating insects. Their role in these ‘‘housekeeping’’ activities underlies agricultural applications that range from the search for sustainable methods for pest control to the production of flavors and fragrances. On the other hand, there is also growing evidence that VOCs are endowed with a range of biological activities in mammals, and that they represent a substantially under-exploited and still largely untapped source of novel drugs and drug leads. This review summarizes recent major developments in the study of biosynthesis, ecological functions and medicinal applications of plant VOCs.  相似文献   

7.
Evidence for a monomeric structure of nonribosomal Peptide synthetases   总被引:3,自引:0,他引:3  
Nonribosomal peptide synthetases (NRPS) are multimodular biocatalysts that bacteria and fungi use to assemble many complex peptides with broad biological activities. The same modular enzymatic assembly line principles are found in fatty acid synthases (FAS), polyketide synthases (PKS), and most recently in hybrid NRPS/PKS multienzymes. FAS as well as PKS are known to function as homodimeric enzyme complexes, raising the question of whether NRPS may also act as homodimers. To test this hypothesis, biophysical methods (size exclusion chromatography, analytical equilibrium ultracentrifugation, and chemical crosslinking) and biochemical methods (two-affinity-tag-system and complementation studies with enzymes being inactivated in different catalytic domains) were applied to NRPS subunits from the gramicidin S (GrsA-ATE), tyrocidine (TycB(1)-CAT and TycB(2-3)-AT.CATE), and enterobactin (EntF-CATTe) biosynthetic systems. These methods had revealed the dimeric structure of FAS and PKS previously, but all three NRPS systems investigated are functionally active as monomers.  相似文献   

8.
In plants, ultraviolet-B radiation (280–315 nm) regulates gene expression and plant morphology through the UV RESPONSE LOCUS 8 (UVR8) photoreceptor. The first signaling event after quantal absorbance is the interaction of the UVR8 C-terminus with the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1). The nature of the interaction between these two proteins is hitherto unknown. A protein homology model of the Arabidopsis thaliana COP1 seven-bladed propeller WD40 repeat domain and de novo folds of the C-terminal 27 amino acid (amino acids 397–423) peptide of Arabidopsis UVR8 (UVR8397?423) is herein reported. Using a theoretical computational docking protocol, the interaction between COP1 and UVR8 was predicted. A core motif was identified in UVR8397?423 comprising adjacent hydrophobic residues V410 and P411 together with a charged residue D412, homologous to corresponding motifs in other COP1-binding proteins, such as ELONGATED HYPOCOTYL 5 (HY5), cryptochrome 1 (CRY1), and salt tolerance proteins STO/STH. The protein–protein interaction between the COP1 WD40 repeat domain and UVR8397?423 reveals binding within a region of COP1 overlapping with the binding site for HY5 and the other COP1-interacting proteins. This study provides a framework for understanding docking between UVR8 and COP1, which in turn gives clues for experimental testing of UVR8/COP1 interaction.  相似文献   

9.
Identification of small-molecule targets remains an important challenge for chemical genetics. We report an approach for target identification and protein discovery based on functional suppression of chemical inhibition in vitro. We discovered pirl1, an inhibitor of actin assembly, in a screen conducted with cytoplasmic extracts. Pirl1 was used to partially inhibit actin assembly in the same assay, and concentrated biochemical fractions of cytoplasmic extracts were added to find activities that suppressed pirl1 inhibition. Two activities were detected, separately purified, and identified as Arp2/3 complex and Cdc42/RhoGDI complex, both known regulators of actin assembly. We show that pirl1 directly inhibits activation of Cdc42/RhoGDI, but that Arp2/3 complex represents a downstream suppressor. This work introduces a general method for using low-micromolar chemical inhibitors to identify both inhibitor targets and other components of a signaling pathway.  相似文献   

10.
11.

Background

The function of the fission yeast cullins Pcu1p and Pcu4p requires modification by the ubiquitin-related peptide Ned8p. A recent report by Lyapina et al. shows that the COP9/signalosome (CSN), a multifunctional eight subunit complex, regulates Ned8p modification of Pcu1p. Disruption of caa1/csn1, which encodes subunit 1 of the putative S. pombe CSN, results in accumulation of Pcu1p exclusively in the modified form. However, it remained unclear whether this reflects global control of all cullins by the entire CSN complex.

Results

We demonstrate that multiple CSN subunits control Ned8p modification of Pcu3p, another fission yeast cullin, which, in complex with the RING domain protein Pip1p, forms a ubiquitin ligase that functions in cellular stress response. Pcu3p is modified by Ned8p on Lys 729 and accumulates exclusively in the neddylated form in cells lacking the CSN subunits 1, 3, 4, and 5. These CSN subunits co-elute with Pcu3p in gel filtration fractions corresponding to ~ 550 kDa and specifically bind both native and Ned8p-modified Pcu3p in vivo. While CSN does not influence the subcellular localization of Pcu3p, Pcu3p-associated in vitro ubiquitin ligase activity is stimulated in the absence of CSN.

Conclusions

Taken together, our data suggest that CSN is a global regulator of Ned8p modification of multiple cullins and potentially other proteins involved in cellular regulation.  相似文献   

12.

Background  

Three macromolecular assemblages, the lid complex of the proteasome, the COP9-Signalosome (CSN) and the eIF3 complex, all consist of multiple proteins harboring MPN and PCI domains. Up to now, no specific function for any of these proteins has been defined, nor has the importance of these motifs been elucidated. In particular Rpn11, a lid subunit, serves as the paradigm for MPN-containing proteins as it is highly conserved and important for proteasome function.  相似文献   

13.
A new phycocyanin(PC) fluorescent subunit namedβ2(18kDa) was isolated and characterized by both SDS-PAGE and isoelectric focusing(IEF) from a species of cryptophytic alga Chroomonas placoidea.PC was separated and purified by ammonium sulfate sedimentation followed by two steps of Sephadex G-100 chromatography.After denatured in 4 mol/L urea for 48 h,PC was divided into two fractions by passing through a Sephacryl S-100 chromatography column twice.The blue fraction(S-1) containedβsubunits with a maximal absorbance at 595 nm in visible light region.While the green fraction(S-2) enriched inαsubunits showed a characteristic long wavelength absorbance at 680-700 nm region and exhibited a relatively low molecular weight of 9.4(α1) and 8.5 kDa(α2).Fraction S-1 also consisted of two different fluorescent subunits with molecular weight of 20.1 kDa(β1) and 18 kDa (β2) and differed from each other on isoelectric points of pH 5.7(ft) and 6.0(ft),respectively.Further investigation of peptide sequence will help a lot in elucidating the new subunit ft that was smaller in size and more neutral than the known ft subunit,and may provide an alternative explanation in structure of cryptophytic phycobiliproteins.  相似文献   

14.
A recent advance in the study of plant lipases involving immunological techniques is presented. In an attempt to characterize lipases of cotyledons from germinating rapeseed seedlings and to investigate an eventual cross-reactivity with animal lipases, we have prepared anti-porcine pancreatic lipase antibodies raised in rabbit. It is shown by enzyme-linked immunosorbent assay and dot-blotting that these antibodies react with lipases in the rapeseed crude extract and in the different cellular fractions obtained by differential centrifugation. Preincubation of the antiserum with the rapeseed crude extract affects the amount of antibodies binding to the porcine pancreatic lipase. We demonstrate immunochemical cross-reactivity between rapeseed and porcine pancreatic lipase. Using the immunoblotting procedure, it is found that antibodies bind specifically to a single polypeptide with a molecular mass of about 55 kDa. Rapeseed lipase activity decreased after immunoprecipitation suggesting that antibodies were bound to some catalytic site residues. We conclude from the data obtained in this study that the two different lipase species present close similarities in amino acid sequence and antigen characteristics.  相似文献   

15.
Cold represents one of the major abiotic factors influencing plant growth and development worldwide. We analysed the long-term responsiveness of an Iranian spring wheat (cv. Kohdasht) to cold from a proteomic point of view, in order to unravel the molecular mechanisms helping a cold-sensitive cultivar to survive exposure to suboptimal temperatures. Plants were grown at 20 or 4°C until entering the reproductive stage and a cross-comparison on the leaf proteomes was performed. Quantitative analyses on protein alterations occurring upon low-temperature exposure showed a reinforcement in ascorbate recycling (dehydroascorbate reductase, ascorbate peroxidase) and protein processing (proteasome subunit, cysteine proteinase), as well as the accumulation of the enzyme devoted to tetrapyrrole resynthesis (glutamate semialdehyde aminomutase). In contrast, among proteins down-regulated after cold stress, we could identify some key Krebs cycle enzymes (isocitrate dehydrogenase, malate dehydrogenase), together with many photosynthesis-related proteins (oxygen-evolving complex proteins, ATP synthase subunits, ferredoxin NADPH oxidoreductase and some Calvin cycle enzymes). Physiological and biochemical parameters (such as shoot apex dissection, chlorophyll, proline and sugar content determination) sustained proteomics findings allowing the present research to contribute to the current knowledge on these long-term responses, which may be crucial to stress adaptation under field conditions.  相似文献   

16.
Glycosylinositol phosphorylceramides (GIPCs) are a class of acidic glycosphingolipids (GSLs) expressed by fungi, plants, and certain parasitic organisms, but not found in cells or tissues of mammals or other higher animals. Recent characterizations of fungal GIPCs point to an emerging diversity which could rival that already known for mammalian GSLs, and which can be expected to present a multitude of challenges for the analytical chemist. Previously, the use of Li(+) cationization, in conjunction with electrospray ionization mass spectrometry (ESI-MS) and low-energy collision-induced dissociation tandem mass spectrometry (ESI-MS/CID-MS), was found to be particularly effective for detailed structural analysis of monohexosylceramides (cerebrosides) from a variety of sources, including fungi, especially minor components present in mixtures at extremely low abundance. In applying Li(+) cationization to characterization of GIPCs, a substantial increase in both sensitivity and fragmentation was observed on collision-induced dissociation of [M + Li](+) versus [M + Na](+) for the same components analyzed under similar conditions, similar to results obtained previously with cerebrosides. Molecular adduct fragmentation patterns were found to be systematic and characteristic for both the glycosylinositol and ceramide moieties with or without phosphate. Interestingly, significant differences were observed in fragmentation patterns when comparing GIPCs having Manalpha1 --> 2 versus Manalpha1 --> 6Ins core linkages. In addition, it was useful to perform tandem product ion scans on primary fragments generated in the orifice region, equivalent to ESI-(CID-MS)(2) mode. Finally, precursor ion scanning from appropriate glycosylinositol phosphate product ions yielded clean molecular ion profiles in the presence of obscuring impurity peaks. The methods were applied to detailed characterization of GIPC fractions of increasing structural complexity from a variety of fungi, including a non-pathogenic Basidiomycete (mushroom), Agaricus blazei, and pathogenic Euascomycete species such as Aspergillus fumigatus, Histoplasma capsulatum, and Sporothrix schenckii. The analysis confirmed a remarkable diversity of GIPC structures synthesized by the dimorphic S. schenckii, as well as differential expression of both glycosylinositol and ceramide structures in the mycelium and yeast forms of this mycopathogen. Mass spectrometry also established that the ceramides of some A. fumigatus GIPC fractions contain very little 2-hydroxylation of the long-chain fatty-N-acyl moiety, a feature that is not generally observed with fungal GIPCs.  相似文献   

17.
The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.  相似文献   

18.

Background  

The COP9 signalosome (CSN) is a conserved protein complex in eukaryotic cells consisting of eight subunits (CSN1 to CSN8). Recent data demonstrate that the CSN is a regulator of the ubiquitin (Ub) proteasome system (UPS). It controls substrate ubiquitination by cullin-RING Ub ligases (CRLs), a process that determines substrate specificity of the UPS. The intrinsic deneddylating activity localized to CSN5 as well as the associated kinases and deubiquitinating activity are involved in the regulatory function of CSN. The exact mechanisms are unclear. In this study we knocked down CSN1 (siCSN1), CSN3 (siCSN3) and CSN5 (siCSN5) by specific siRNA oligos permanently expressed in HeLa cells. The analysis and comparison of siRNA cells revealed differential impact of individual subunits on CSN structure and function.  相似文献   

19.
During the last two decades, several exciting reports have provided many advances in the role and biosynthesis of l-ascorbic acid (AsA) and tocochromanols, including tocopherols and tocotrienols, in higher plants. There are increasing bodies of experimental evidence that demonstrate that AsA and tocochromanols (especially tocopherols) play an important role as antioxidants and nutrients in mammals and photosynthetic organisms and are also involved in plant responses to stimuli. Although AsA and tocochromanol biosynthesis pathways have been well characterized using Arabidopsis, these pathways are still poorly understood in rice, which is an economically important monocot cereal crop. In this study using computational analysis of sequenced rice genome, we identified eight and seven potential non-redundant members involved in AsA and tocochromanol biosynthetic pathways, respectively. The results reveal that the common feature of these gene promoters is the combination of light-responsive, hormone-responsive, and stress-responsive elements. These findings, together with expression analysis in the MPSS database, indicate that AsA and tocochromanols might be co-related with the complex signaling pathways involved in plant responses.  相似文献   

20.
Structural studies of the high molecular weight (HMW) glutenin subunits 1Dy10 and 1Dy12 of bread wheat were conducted using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high-performance liquid chromatography/electrospray ionisation mass spectrometry (RP-HPLC/ESI-MS). For both proteins, MALDI-TOFMS analysis showed that the isolated fractions contained a second component with a mass about 500-540 Da lower than the major component. The testing and correction of the gene-derived amino acid sequences of both proteins were performed by direct MALDI-TOFMS analysis of their tryptic peptide mixture and analysis of the digests was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, optimising the matrix and the acquisition parameters for each mass range. Complementary data were obtained by RP-HPLC/ESI-MS analysis of the tryptic digest. This resulted in the coverage of the whole protein sequences except for two short fragments (T1 and T8), which are identical in the two homologous subunits, and for an additional dipeptide (T14) in subunit 1Dy12, which were not detected. It also demonstrated that, in contrast to the gene-derived data, the sequence of subunit 1Dy12 does not include the dipeptide Gly-Gln between residues Gln(454) and Pro(455), and that the lower mass components present in both fractions correspond to the same sequences lacking short peptides that are probably lost from the protein N- or C-termini. Finally, the results obtained provide evidence for the lack of a substantial level of glycosylation or other post-translational modifications of the two subunits, and demonstrate that mass spectrometric mapping is the most useful method presently available for the direct verification of the gene-derived sequences of HMW glutenin subunits and similar proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号