首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《中国物理 B》2021,30(5):54205-054205
We experimentally demonstrated a stable multi-wavelength bright–dark pulse pair in a mode-locked thulium-doped fiber laser(TDFL). The nonlinear polarization rotation(NPR) and nonlinear optical loop mirror(NOLM) were employed in a figure-eight cavity to allow for multi-wavelength mode-locking operation. By incorporating different lengths of high birefringence polarization-maintaining fiber(PMF), the fiber laser could operate stably in a multi-wavelength emission state. Compared with the absence of the PMF, the birefringence effect caused by PMF resulted in rich multi-wavelength optical spectra and better intensity symmetry and stability of the bright–dark pulse pair.  相似文献   

2.
We experimentally analyze the self-starting operation of a figure-eight mode-locked fiber laser. The design is based on a power-balanced nonlinear optical loop mirror (NOLM) with highly twisted low-birefringence fiber and a quarter-wave (QW) retarder in the loop. The NOLM operates by nonlinear polarization rotation. Self-starting mode-locking requires a careful adjustment of the NOLM low-power transmission, which is easily realized with our setup by adjusting the angle of the QW retarder. The laser is capable of generating ∼20 ps pulses at the fundamental repetition frequency of 0.78 MHz.  相似文献   

3.
We experimentally investigate the passive mode-locking operation of a figure eight-fiber laser based on a symmetrical nonlinear optical loop mirror (NOLM) with a highly twisted low-birefringence fiber in the loop. NOLM switching is achieved by the polarization asymmetry between the counterpropagating beams in the loop. The most efficient switching is obtained when we have linear polarization for one of the beams and the circular polarization for the other. We used a quarter-wave retarder (QWR) in the NOLM loop to break the polarization symmetry. Through the QWR position, it is possible to adjust the transmission behavior from a maximum to a minimum at a low input power. With our configuration, it is possible to get self-starting mode-locking operation at a specific position of the QWR. This QWR position corresponds to a value close to the minimal transmission. The pulse repetition frequency was 0.8 MHz. The mode-locked laser ran in a stable operation for hours. We achieved a stable generation of picosecond pulses with milliwatts of an average output power.  相似文献   

4.
We study a mechanism to attain stable and ultra-flat multiwavelength oscillations in erbium-doped fiber lasers (EDFLs). The key concept is to introduce intensity-dependent loss (IDL) into the laser cavity, which can effectively suppress the mode competition in the homogeneously broadened gain medium and ensure a uniform power distribution over wavelengths via the gain-clamping effect. The technique was successfully demonstrated by employing a nonlinear optical loop mirror (NOLM) in erbium-doped fiber laser cavity. Based on the experimental results, further experimental investigation and theoretical analysis are carried out to show the effectiveness of the gain-clamping mechanism in realizing the multiwavelength operation of the EDFL.  相似文献   

5.
We demonstrate a simplified configuration of an ultrafast walk-off-free nonlinear optical loop mirror (NOLM) for 320-10-Gbit/s optical time-division demultiplexing. The proposed NOLM consists of a short, 100-m length of highly nonlinear dispersion-shifted fiber, resulting in compact, highly stable, and ultrafast walk-off-free operation.  相似文献   

6.
We experimentally investigate an all-fiber passively mode-locked laser generating ps pulses. The experimental setup is a figure eight fiber laser configuration, including a power-symmetric Nonlinear Optical Loop Mirror (NOLM) with highly twisted low-birefringence fiber in the loop. NOLM switching is achieved by polarization asymmetry between the counter-propagating beams in the loop. We used a Quarter-Wave Retarder in the loop to break the polarization symmetry. Using a polarizer beam-splitter cube as the NOLM output we got the best quality output pulses from the laser. At this output, we are monitoring the output pulse polarization component which is parallel to the input NOLM component. We achieved stable generation of ~25 ps pulses at the repetition frequency of 0.78 MHz with milliwatts average output power. The mode-locked laser ran in stable operation for hours.  相似文献   

7.
Figure-eight actively-passively mode-locked erbium-doped fiber laser   总被引:3,自引:0,他引:3  
The advantages of using nonlinear optical loop mirror (NOLM) to compress pulse with slight amplitude fluctuation and reflected energy loss are analyzed in theory. Experimentally the NOLM is placed in an actively mode-locked erbium-doped fiber ring laser to form a figure-eight actively and passively mode-locked fiber laser. 12 ps mode-locked pulses centered at 1.543 μm were obtained with the modulation frequency of 2.498748700 GHz. 3.715 mW output power is achieved with 50 mW pump power.  相似文献   

8.
Ilday FO  Wise FW  Sosnowski T 《Optics letters》2002,27(17):1531-1533
A stretched-pulse fiber laser with a nonlinear optical loop mirror (NOLM) that produces 100-fs pulses with 1-nJ energy is demonstrated. These results constitute a 30-fold increase in pulse energy over previously reported femtosecond fiber lasers with a NOLM. Compared with previous stretched-pulse lasers, this laser offers a cleaner spectrum and improved stability, with comparable pulse duration and energy. Implications for the construction of truly environmentally stable lasers are discussed.  相似文献   

9.
自启动被动锁模掺铒光纤激光器的研究   总被引:2,自引:0,他引:2  
在非线性光纤环形镜非线性开关效应和块状半导体波导饱和吸收效应的共同作用下,实现了掺铒光纤激光器的自启动被动锁模,获得了十分稳定的锁模脉冲序列,观察到高次谐频锁模脉冲输出。分析了非线性光纤环形镜的非线性开关反射特性。  相似文献   

10.
石俊凯  王国名  黎尧  高书苑  刘立拓  周维虎 《物理学报》2019,68(6):64206-064206
构建了基于损耗非对称非线性光学环镜的8字腔掺铒光纤锁模激光器,并讨论了腔内滤波带宽对腔内脉冲演化和激光器输出特性的影响.在非线性光学环镜中引入双向输出耦合器,耦合器和传输光纤位置的不对称产生非互易性,实现锁模运转.利用自制的可调谐滤波器实验研究了滤波带宽对激光器的影响.当滤波带宽为2.1 nm时,腔内脉冲的演化过程受滤波和孤子效应的共同作用,激光器顺时针和逆时针输出脉冲半高全宽分别为583.7fs和2.94 ps.随着滤波带宽增大,滤波的作用逐渐减弱,激光器两路输出脉冲参数逐渐接近,并接近傅里叶变换极限脉冲.当滤波带宽较大时,腔内脉冲的演化过程受增益谱和孤子效应的共同作用,激光器顺时针和逆时针输出脉冲均为变换极限脉冲,半高全宽约为440 fs.通过调节滤波器中心波长实现了对激光器输出脉冲光谱的连续调谐,调节范围大于30 nm.  相似文献   

11.
We report an experimental demonstration of multiwavelength erbium-doped fiber laser with adjustable wavelength number exploiting a power-symmetric nonlinear optical loop mirror (NOLM). As the pump power increases from 53?mW to 410?mW, one?Cseven lasing line(s) at fixed wavelength around 1571?nm are obtained. A?theoretical model describing the NOLM and the EDF is established to investigate the effect of the pump power on the lasing characteristics. Numerical results confirm the experiment measurements and indicate that it is the intensity-dependent loss of lasing beams generated in the NOLM that leads to such phenomena.  相似文献   

12.
王林  李景镇  徐平 《光学学报》2001,21(5):67-570
在理论上详细分析了利用非线性光学环形镜(NOLM)来减小输出脉冲幅度波动,消除噪声并对脉冲进行压缩整形的物理机制。在主动锁模掺铒光纤环形激光器中(AHML-EDFL)接入一个非线性光学环形镜,形成结构新颖的主被动锁模掺铒光纤激光器(APHML-EDFL),利用非线性光学环形镜所具有的饱和吸收体功能,成功地制抑了4阶有理数谐波锁模(RHML)中较大的幅度噪声,在1GHz量级的调制频率下,由主被动锁模掺铒光纤激光器获产生重复频率为5.1GHz,幅度相当稳定的4阶有理数谐波锁模脉冲序列。  相似文献   

13.
利用非线性光学环路镜实现多个波长的同时变换   总被引:2,自引:0,他引:2  
利用非线性光不路镜(NOLM)成功地实现了多个波长的同时变换,最大波长变换间距大于25nm。实验系统中采用增益开关分布反馈半导体激光器(GS DFB-LD)产生的超短光脉冲作为控制光,频谱分割法得到多波长激光作为信号光。改变控制光的输入功率或非线性光学环路镜中的偏振控制器的偏振方向能够改变不同变换波长信号的性能。  相似文献   

14.
A stable and short pulse train of ∼100 MHz repetition frequency was obtained from an erbium doped fiber laser excited by a “continuous” semiconductor laser and by using a linear cavity defined by a Bragg grating pair. The operation frequency of the fiber laser was greater (∼5-15 times) than the cavity round-trip frequency. Emission properties obtained from the erbium doped fiber laser were correlated with those taken from the pump laser, which presented a particular optical noise (very short pulses) added to the continuous emission. From the temporal and radio-frequency analysis of both systems, we conclude that the pump emission characteristics are the responsible of the fiber laser pulsed behaviour.  相似文献   

15.
In this paper we show numerically that high-energy pulses can be obtained with a figure-eight Erbium-doped fiber laser with large normal net dispersion, and in which an anomalous-dispersion Nonlinear Optical Loop Mirror (NOLM) is used as the effective saturable absorber. One advantage of this configuration over the ring cavity is the possibility to adjust the length of the NOLM loop to avoid overdriving the saturable absorber. The ring section of the laser includes a bandpass filter to balance the combined effects of Kerr nonlinearity and normal dispersion. Strict polarization control is performed in the NOLM as well as in the ring section of the laser. The NOLM is a power-symmetric scheme whose switching relies on nonlinear polarization rotation. This architecture allows a precise control of the low-power NOLM transmission through the orientation of a quarter-wave retarder, whose adjustment is shown to be critical for stable pulsed operation. Pulse formation appears to depend critically on the filter width. If it is wide enough, ps pulses with a large positive linear chirp are produced. After dechirping outside the laser, nearly transform-limited pulses with durations down to 240 fs, energies up to 10 nJ and peak powers beyond 40 kW are predicted.  相似文献   

16.
We propose and study numerically an all-normal-dispersion Ytterbium-doped figure-eight fiber laser scheme for generation of high-energy pulses. The monotonous pulse stretching that takes place in the fiber under the combined actions of normal dispersion and nonlinear Kerr effect is compensated by the amplitude modulation effect of a bandpass filter inserted in the ring section of the laser. The Nonlinear Optical Loop Mirror (NOLM) also contributes to shorten the pulses. An output coupler with a large output coupling ratio is inserted at the amplifier output in order to extract the maximal energy from the laser. A short segment of Ytterbium-doped fiber compensates for the losses. Stable single-pulse operation is predicted over a wide range of values of the laser parameters. If the laser parameters (ring and NOLM length, dispersion, filter bandwidth, output coupling ratio) are optimized, pulses with several tens of nanojoules energy are readily obtained, with picosecond duration and a large positive chirp which is linear near the peak. If small-signal gain is large enough, the use of very large output coupling ratios opens the way to pulse energies close to 100 nJ and, after dechirping outside the laser, to durations of ˜50 fs and peak powers of 1 MW.  相似文献   

17.
陈小刚  黄德修  元秀华 《光学学报》2007,27(9):1570-1574
成功演示了码片速率高达280 Gchip/s的全光编解码,编解码光栅是采用"等效相移"方法制作而成的超结构光纤布拉格光栅(SSFBG).考虑和分析了信道间干涉,实验验证了40 Gb/s×2的光码分复用(OCDM)信号复用.引入非线性光学环镜(NOLM))来抑制信道问干涉,利用非线性光学环镜的非线性开关特性将解码输出脉冲的宽度由7.7 ps压缩至3.8 ps,并同时有效的减小了干扰噪声,进而提高系统性能.理论计算和实验结果表明了采用超结构光纤布拉格光栅和非线性光学环镜实现高效编解码的可行性.高速的全光编解码可以应用于点到点的光码分复用系统以及光标签交换网络.  相似文献   

18.
利用非线性光环形镜(NOLM)的可饱和吸收特性实现了可自启动的2μm全光纤高能量被动锁模掺铥光纤激光器。当泵浦功率大于3W时,激光器工作在连续或不稳定脉冲运转状态;泵浦功率达到4.69W后,输出为自启动锁模脉冲,重复频率4.26MHz,中心波长2 061.5nm,光谱半极大宽度18.1nm,平均输出功率8.8mW;继续增加泵浦功率到最大值7.56W,可以得到中心波长2 062.2nm、光谱半极大宽度17.1nm、斜率效率为6.2%、脉冲宽度和能量分别为424fs和65.6nJ的稳定锁模脉冲。这是目前已报道的在未经放大情况下脉冲能量最高的2μm锁模脉冲光纤激光器。  相似文献   

19.
The nonlinear optical loop mirror (NOLM) is used as a saturable absorbed to reshape pulses. Experimentally, an actively mode-locked erbium-doped fiber ring laser with figure-eight structure is set up. 2 - 4 order harmonic pulse train with stable amplitude has been obtained when the RF modulation frequency is about 2.5 GHz.  相似文献   

20.
We demonstrate experimentally the operation of a linear cavity dual-wavelength fiber laser using a polarization maintaining fiber Bragg grating (PM-FBG) as an end mirror that defines two closely spaced laser emission lines. The PM-FBG is also used to tune the laser wavelengths. The total tuning range is ∼8 nm. The laser operates in a stable dual-wavelength mode for an appropriate adjustment of the cavity losses for the generated wavelengths. The high birefringence (Hi-Bi) fiber optical loop mirror (FOLM) is used as a tunable spectral filter to adjust the losses. The FOLM adjustment was performed by the temperature control of the Hi-Bi fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号