首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Size exclusion chromatography (SEC) followed by anion exchange chromatography (AEC) hyphenated with inductively coupled plasma-mass spectrometry (ICP-MS) was applied for fractionating metals bound to marine dissolved organic matter (DOM). Surface seawater samples (100 L) were subjected to tangential flow ultrafiltration (10,000 Da cut off) for isolating and pre-concentrating dissolved large molecules. The isolated fraction (retentate) consisted of 1 L, which was further freeze-dried and re-dissolved to 250 mL with ultrapure water. After HI Trap desalting of the re-dissolved retentate, SEC with UV detection showed marine DOM ranging from 6.5 kDa (lower than the permeable volume of the SEC column) to 16 kDa. A further characterization of this fraction by AEC with UV detection revealed the existence of four groups of macromolecules exhibiting retention times of 2.3, 2.8, 4.5 and 14.0 min. AEC hyphenated with ICP-MS showed the presence of strontium and zinc in the first AE fraction isolated from the SEC fraction; while manganese was found to be bound to the second AE fraction. Cobalt was found to be bound to molecules comprising the third AE fraction.  相似文献   

2.
Columns switch recycling size exclusion chromatography (csrSEC) was proposed to achieve high resolution protein separation with good biocompatibility. Proteins were firstly separated by two serially coupled SEC columns, and fractions were in sequence switched back to the first column by two-position valves for further separation in terms of close-loop recycling until satisfactory resolution was achieved. Compared to SEC, the separation window was broadened by increasing column length via cycling without further increase on back pressure. Compared to recycling SEC (rSEC), the overtaking of later eluted components by early eluted ones after several cycles could be avoided for complex sample analysis, by parking fractions in the second SEC column before transferred in turn back to the first one for cycling ordinally. In our experiments, the baseline separation of five proteins with molecular weight ranging from 10 kDa to 80 kDa was achieved by csrSEC. Furthermore, a multidimensional csrSEC–RPLC platform was constructed, and peak capacity up to 3600 was obtained for protein separation. All these results demonstrated that csrSEC is a promising protein separation mode with good biocompatibility, broadened separation window and improved resolution.  相似文献   

3.
In this work, size exclusion chromatography (SEC) with UV and inductively coupled plasma mass spectrometry (ICP-MS) detection was used to study the association of selenium to proteins present in Brazil nuts (Bertholletia excelsa) under five different extraction conditions. As expected, better solubilization of proteins was observed using 0.05 mol L−1 sodium hydroxide and 1% sodium dodecylsulfate (SDS) in Tris/HCl buffer (0.05 mol L−1, pH 8) as compared to 0.05 mol L−1 HCl, 0.05 mol L−1 Tris/HCl or hot water (60 °C). Due to non-destructive character of Tris-SDS treatment, this was applied for studying molecular weight (MW) distribution patterns of selenium-containing nut proteins. Three different SEC columns were used for obtaining complete MW distribution of selenium: Superdex 75, Superdex Peptide, and Superdex 200 were tested with 50 mmol L−1 Tris buffer (pH 8), 150 mmol L−1 ammonium bicarbonate buffer (pH 7.8), phosphate (pH 7.5), and CAPS (pH 10.0) mobile phases. Using Superdex 200 column, the elution of at least three MW fractions was observed with UV detection (200-10 kDa) and ICP-MS chromatogram showed the co-elution of selenium with the two earlier fractions. The apparent MWs of these selenium-containing fractions were respectively about 107 and 50 kDa, as evaluated from the column calibration. For further characterization of individual selenium species, the defatted nuts were hydrolyzed with proteinase K and analyzed by capillary electrophoresis (CE) with ICP-MS detection. The suitability of CE for the separation of selenite, selenate, selenocystine and selenomethionine in the presence of the nut sample matrix is demonstrated. Complete separation of the above mentioned selenium species was obtained within a migration time of 7 min. In the analysis of nut extracts with CE-ICP-MS, selenium was found to be present mainly as selenomethionine.  相似文献   

4.
Cui H  He R  Wang J 《Talanta》2006,70(1):139-145
A high sensitive chromium speciation procedure based on spectrophotometric detection was developed by coupling flow injection on-line preconcentration with a catalytic indicator reaction. Chromium(VI) is retained on a mini-column packed with polystyrene anion exchange resin (strong basic 717 resin), which was afterwards eluted with a small volume of NaNO3 solution. The eluted Cr(VI) is then directed to catalyze the decoloration of alizarin cyanine green (ACG) in the presence of bromate as oxidizing reagent, and the absorbance change is proportional to the concentration of Cr(VI). With a sampling volume of 12 ml and a loading time of 120 s, an enrichment factor of 26.5 was achieved for the preconcentration. The most distinct feature of this procedure is characterized by its overall detection limit, i.e., 50 ng l−1, which is much superior to those achieved by FAAS, and comparable to those obtained by inductively coupled plasma mass spectrometry (ICPMS) and electrothermal atomic absorption spectrometry (ETAAS). The procedure was validated with a certified reference material. It was also applied to the speciation of chromium in a series of surface water samples.  相似文献   

5.
A method for the determination of iron in indium phosphide (InP) wafer is proposed. In the present experiment, an on-line matrix separation system using an ion exchange column was combined with inductively coupled plasma mass spectrometry (ICP-MS) for the determination of ng g−1 level of iron. In the on-line matrix separation, indium and iron in the sample solution was passed through a strongly-basic anion exchange resin column with the 9 M HCl carrier solution, where indium was eluted from the column and iron was adsorbed on it. Then, iron was eluted with the carrier solution of 0.3 M HCl containing 1 ng ml−1 cobalt, and it was directly introduced into the ICP-MS nebulizer. In ICP-MS measurement, cobalt in the carrier solution was used as an internal standard to correct the change in sensitivity due to matrix effect, and the peak area integration was performed to quantify iron and cobalt in the integration time range of 20-60 s from the start of the cobalt solution flow. The detection limit (3σ) for iron was 3 ng g−1, and the recoveries for iron in the 0.8, 2.4, and 8.0% indium solutions were almost 100%. The method was applied to the determination of iron in commercially available iron-doped InP wafers. The obtained results for InP wafer samples with the high iron concentration were in good agreement with those obtained by graphite furnace atomic absorption spectrometry (GFAAS).  相似文献   

6.
A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2 mol L−1 HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N = 10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5 μg of uranium and thorium. The three sigma detection limits (N = 15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3 ng L−1, respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS.  相似文献   

7.
Cross-linked chitosan was chemically modified with di-2-propanolamine via an arm of chloromethyloxirane (CCTS-DPA resin). The adsorption behavior of the resin towards 62 elements was examined using a mini-column pretreatment method, and the collected elements were eluted with 1 mol L− 1 nitric acid before measurement by inductively coupled plasma-mass spectrometry (ICP-MS).The CCTS-DPA resin can adsorb several metal cations and several oxoanionic elements at appropriate pH. However, di-2-propanolamine (DPA) attached to cross-linked chitosan (CCTS) showed excellent ability and selectivity for the adsorption of germanium at pH 6 to 9. The adsorption capacity of the resin for germanium (IV) was found to be 106 mg g− 1 resin, whereas the adsorption rate constant was 9.82 × 10− 2 min− 1. Through the column treatment, alkali and alkaline earth matrices in river water and seawater matrices could be completely removed. The resin can also successfully remove chloride and selenium that can interfere with the direct determination of germanium by ICP-MS. The applicability of the CCTS-DPA resin was further demonstrated for the collection/preconcentration of germanium in environmental water samples and its determination by ICP-MS. The concentrations of germanium in tap water, river water and seawater samples were found in the range of 0.011 to 0.022 μg L− 1.  相似文献   

8.
Three strategies were investigated for the simultaneous separation and on-line preconcentration of charged and neutral hypolipidaemic drugs in micellar electrokinetic chromatography (MEKC). A background electrolyte (BGE) consisting of 20 mM ammonium bicarbonate buffer (pH 8.50) and 50 mM sodium dodecyl sulfate (SDS) was used for the separation and on-line preconcentration of the drugs. The efficiencies of sweeping, analyte focusing by micelle collapse (AFMC), and simultaneous field-amplified sample stacking (FASS) and sweeping, were compared for the preconcentration of eight hypolipidaemic drugs in different conductivity sample matrices. When compared with a hydrodynamic injection (5 s at 50 mbar, 0.51% of capillary volume to detection window) of drug mixture prepared in the separation BGE, improvements of detection sensitivity of 60-, 83-, and 80-fold were obtained with sweeping, AFMC and simultaneous FASS and sweeping, respectively, giving limits of detection (LODs) of 50, 36, and 38 μg/L, respectively. The studied techniques showed suitability for focusing different types of analytes having different values of retention factor (k). This is the first report for the separation of different types of hypolipidaemic drugs by capillary electrophoresis (CE). The three methods were validated then applied for the analysis of target analytes in wastewater samples from Hobart city.  相似文献   

9.
The cloud point extraction (CPE) preconcentration of ultra-trace amount of mercury species prior to reverse-phase high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection was studied. Mercury species including methyl-, ethyl-, phenyl- and inorganic mercury were transformed into hydrophobic chelates by reaction with sodium diethyldithiocarbamate, and the hydrophobic chelates were extracted into a surfactant-rich phase of Triton X-114 upon heating in a water bath at 40 °C. Ethylmercury was found partially decomposed during the CPE process, and was not included in the developed method. Various experimental conditions affecting the CPE preconcentration, HPLC separation, and ICP-MS determination were optimized. Under the optimized conditions, detection limits of 13, 8 and 6 ng l−1 (as Hg) were achieved for MeHg+, PhHg+ and Hg2+, respectively. Seven determinations of a standard solution containing the three mercury species each at 0.5 ng ml−1 level produced relative standard deviations of 5.3, 2.3 and 4.4% for MeHg+, PhHg+ and Hg2+, respectively. The developed method was successfully applied for the determination of the three mercury species in environmental water samples and biological samples of human hair and ocean fish.  相似文献   

10.
The paper describes a research of possible application of UTEVA and TRU resins and anion exchanger AMBERLITE CG-400 in nitrate form for the isolation of uranium and thorium from natural samples. The results of determination of distribution coefficient have shown that uranium and thorium bind on TRU and UTEVA resins from the solutions of nitric and hydrochloric acids, and binding strength increases proportionally to increase the concentration of acids. Uranium and thorium bind rather strongly to TRU resin from the nitric acid in concentration ranging from 0.5 to 5 mol L−1, while large quantities of other ions present in the sample do not influence on the binding strength. Due to the difference in binding strength in HCl and HNO3 respectively, uranium and thorium can be easily separated from each other on the columns filled with TRU resin. Furthermore, thorium binds to anion exchanger in nitrate form from alcohol solutions of nitric acid very strongly, while uranium does not, so they can be easily separated. Based on these results, we have created the procedures of preconcentration and separation of uranium and thorium from the soil, drinking water and seawater samples by using TRU and UTEVA resins and strong base anion exchangers in nitrate form. In one of the procedures, uranium and thorium bind directly from the samples of drinking water and seawater on the column filled with TRU resin from 0.5 mol L−1 HNO3 in a water sample. After binding, thorium is separated from uranium with 0.5 mol L−1 HCl, and uranium is eluted with deionised water. By applying the described procedure, it is possible to achieve the concentration factor of over 1000 for the column filled with 1 g of resin and splashed with 2 L of the sample. Spectrophotometric determination with Arsenazo III, with this concentration factor results in detection limits below 1 μg L−1 for uranium and thorium. In the second procedure, uranium and thorium are isolated from the soil samples with TRU resin, while they are separated from each other on the column filled with anion exchanger in alcohol solutions. Anion exchanger combined with alcohol solutions enables isolation of thorium from soil samples and its separation from a wide range of elements, as well as spectrophotometric determination, ICP-MS determination, and other determination techniques.  相似文献   

11.
A 100-fold preconcentration procedure based on rare-earth elements (REEs) separation from water samples with an extraction chromatographic column has been developed. The separation of REEs from matrix elements (mainly Fe, alkaline and alkaline-earth elements) in water samples was performed loading the samples, previously acidified to pH 2.0 with HNO3, in a 2 ml column preconditioned with 20 ml 0.01 M HNO3. Subsequently, REEs were quantitatively eluted with 20 ml 7 M HNO3. This solution was evaporated to dryness and the final residue was dissolved in 10 ml 2% HNO3 containing 1 μg l−1 of cesium used as internal standard. The solution was directly analysed by inductively coupled plasma mass spectrometry (ICP-MS), using ultrasonic nebulization, obtaining quantification limits ranging from 0.05 to 0.10 ng l−1. The proposed method has been applied to granitic waters running through fracture fillings coated by iron and manganese oxy-hydroxides in the area of the Ratones (Cáceres, Spain) old uranium mine.  相似文献   

12.
An analytical scheme was developed for the determination of rare-earth elements and gadolinium diethylenetriaminepentaacetate (Gd-DTPA) in river water by ICP-MS. Since the concentration of Gd-DTPA and the rare-earth elements in river water is often lower than the limits of detection in quadrupole ICP-MS applying pneumatic nebulization, a preconcentration procedure is essential.In this work, the capabilities of countercurrent chromatography (CCC) for preconcentration of REE were investigated. For preconcentration ethylhexylphosphates as stationary phase had been used. Acidified aqueous samples (pH 2) and river water spiked with REE and Gd-DTPA were under study. The procedure was compared with solid phase extraction (SPE) using the same samples and ethylhexylphosphates as stationary phase. The recovery of the light and middle REE was found to be at about 100%, which was found to be more efficient than applying SPE. In contrast, the recovery rates for Yb and Lu were low (and poorly reproducible) using CCC (57% and 73%, respectively) while significant better results were obtained with SPE (89% and 84%, respectively).The recoveries of Gd applying Gd-DTPA were 80 ± 4% in the investigation of river water samples.  相似文献   

13.
A syringe-driven chelating column (SDCC) was applied to develop an on-line preconcentration/inductively coupled plasma mass spectrometry (ICP-MS) method for preconcentration and determination of rare earth elements (REEs) in seawater samples. The present on-line preconcentration system consists of only one pump, two valves, an SDCC, an ICP-MS, several connectors, and Teflon tubes. Optimizations of adsorption pH condition, sample loading flow rate, and integration range were carried out to achieve optimum measurement conditions for REEs in seawater sample. Six minutes was enough for a preconcentration and measurement cycle using 10 mL of seawater sample, where the detection limits for different REEs were in the range of 0.005 pg mL−1 to 0.09 pg mL−1. Analytical results of REEs in a seawater certified reference material (CRM), NASS-5, confirmed the usefulness of the present method. Furthermore, concentrations of REEs in Nikkawa Beach coastal seawater were determined and discussed with shale normalized REE distribution pattern.  相似文献   

14.
A flow injection on-line sorption system was developed for the separation and preconcentration of traces of Ag, Cd, Co, Ni, Pb, U and Y from natural water samples with subsequent detection by ICP TOF MS. Simultaneous preconcentration of the analytes was achieved by complexation with the chelating reagent 1-phenyl-3-methyl-4-benzoylpyrazol-5-one immobilized on the inner walls of a (200 cm × 0.5 mm) PTFE knotted reactor. The analytes were eluted and transported to an axial ICP TOF MS system with 1% (v/v) HNO3 containing 0.3 μg l−1 of Rh as an internal standard using ultrasonic nebulization. The detection limits (3σ) varied from 0.3 ng l−1 for Y to 15.2 ng l−1 for Ni and the precision (R.S.D.) was better than 4%. Using a loading time of 90 s and a sample flow rate of 4.5 ml min−1, enhancement factors of 3-14 were obtained for the different analytes in comparison with their direct determination by ICP TOF MS with ultrasonic nebulization without preconcentration. The accuracy of the method was demonstrated by analysis of water based certified reference materials.  相似文献   

15.
A flow solid phase extraction procedure based on biosorption of Pt(IV) and Pd(II) on Aspergillus sp. immobilized on cellulose resin Cellex-T was proposed for the separation and preconcentration of Pt and Pd before their determination by electrothermal atomic absorption spectrometry (ETAAS). The analytical conditions including sample pH, eluent type, flow rates of sample and eluent solutions were examined. The analytes were selectively retained on the biosorbent in acidic medium (pH 1) and subsequently eluted from the column with 1 mL of thiourea solution (0.25 mol L− 1 thiourea in 0.3 mol L− 1 HCl). The reproducibility of the procedure was below 5%. The limit of detection of the method was 0.020 ng mL− 1 for Pt and 0.012 ng mL− 1 for Pd. The method validation was performed by analysis of certified reference materials BCR-723 (tunnel dust) and SARM-76 (platinum ore). The developed separation procedure was applied to the determination of Pt and Pd in road dust samples by ETAAS.The applied biosorbent is characterized by high sorption capacity: 0.47 mg g− 1 for Pt and 1.24 mg g− 1 for Pd.  相似文献   

16.
M.V. Balarama Krishna 《Talanta》2009,79(5):1454-1463
The applicability of polyaniline (PANI) for the on-line preconcentration and recovery of palladium from various water samples has been investigated. Batch experiments were performed to optimize conditions such as pH and contact time to achieve quantitative separation of Pd spiked at high (μg ml−1) and low levels (ng ml−1). During all the steps of the removal process, it was found that Pd was selectively removed by PANI even in the presence of various ions. Quantitative removal of Pd occured in the entire studied pH range (1-12) and the Kd value was found to be >106. Kinetic studies show that a contact time of <4 min was adequate to reach equilibrium. The retained Pd was subsequently eluted with a mixture of HCl and thiourea, optimized using a factorial experimental design approach. ICP-OES was used for the micro-level determinations of Pd whereas ICP-MS was used for the determination of Pd at sub-ppb levels.Breakthrough curve using column experiments demonstrated that PANI has an excellent ability to accumulate up to ∼120 mg g−1 of Pd from synthetic sample solutions. A preconcentration factor of about 125 was achieved for Pd when 250 ml of water was passed. PANI columns prepared were used up to 10 times in consecutive retention-elution cycles without appreciable deterioration in their performance. The proposed on-line method also has the ability to remove interfering elements Cu and Y for the determination of Pd in waters by ICP-MS. The reported method has been applied successfully for the determination of Pd in ground water, lake water sea-water and waste water samples. The recoveries were found to be >95% in all cases. These studies indicate that PANI has an excellent ability to preconcentrate Pd from various waters making the method very promising for the determination of Pd.  相似文献   

17.
Six selected primary carbamate insecticides, methomyl, carbaryl, carbofuran, propoxur, isoprocarb, and promecarb, were hydrolyzed in alkaline solution, resulting in electroactive derivatives detectable at a platinum (Pt) electrode poised at +0.8 V vs Ag/AgCl (3 M NaCl). The Pt electrode was inserted into a small electrochemical cell and positioned close to the capillary outlet as an end-column detector to detect the carbamate derivatives after electrophoretic separation. Based on their predicted pKa values and aqueous solubilities, micellar electrokinetic chromatography (MEKC) was optimized for baseline separation of the derivatives using 20 mM borate, pH 10.2 containing 20 mM sodium dodecyl sulfate as a running buffer. When combined with solid-phase extraction (SPE) on octadecyl silica, a preconcentration factor of 100-fold achieved detection to 0.5 μM methomyl and to 0.01 μM for the remaining five pesticides, significantly below the level regulated by government agencies of most countries. The SPE-MEKC method when applied to the separation and analysis of spiked river water and soil samples, yielded results with excellent reproducibility, recovery and selectivity.  相似文献   

18.
Speciation of mercury in salmon egg cell cytoplasm was investigated by surfactant-mediated high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS), where an ODS (octadecylsilica) column coated with a bile acid derivative, CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate), was used for species separation. Prior to the speciation analysis, total Hg in the cell cytoplasm was determined by ICP-MS at m/z 202 in a flow injection mode. For the precise measurement, salmon egg cell cytoplasm was diluted five-fold with 0.1 M Tris (Tris(hydroxymethyl)aminomethane)-HNO3 buffer solution, and the standard addition method was employed. Thus, the total concentration of Hg in cell cytoplasm was estimated to be 12.4 ng g−1 on the wet weight basis. Next, the cell cytoplasm diluted five-fold with 0.1 M Tris-HNO3 buffer solution was analyzed by surfactant-mediated HPLC with the dual detection system of a UV absorption detector and an ICP-MS instrument. Two peaks corresponding to some proteins and small molecules were mainly observed in those chromatograms. When salmon egg cell cytoplasm was diluted five-fold with 0.01 M Tris buffer solution or pure water, some precipitates appeared probably because of precipitation of hydrophobic proteins in cytoplasm. After the precipitates were eliminated with a membrane filter, the filtrate was subjected to the analysis by surfactant-mediated HPLC/UV/ICP-MS. As a result, the peaks for small molecular species of Hg were clearly observed at the retention time near 4.0 min (corresponding to low-molecular weight zone) in the chromatograms with UV absorption detection as well as with Hg- and S-specific ICP-MS detections. The small molecule bound with Hg was identified as cysteine through the cysteine-spiked experiment. In addition, the protein fraction on the chromatogram obtained by using the CHAPS-coated ODS column was further analyzed by SEC (size exclusion chromatography). Consequently, several protein peaks with molecular weight of 300, 50 and 12 kDa were observed in all the detections of UV absorption, Hg and Se, although two peaks among them were coincident in the case of S. These results indicate that Hg in salmon egg cell cytoplasm binds with proteins containing selenocysteine and/or cysteine residues in proteins.  相似文献   

19.
Takata H  Zheng J  Tagami K  Aono T  Uchida S 《Talanta》2011,85(4):1772-1777
This article describes an analytical method for the separation, preconcentration and determination of 232Th in seawater samples at sub-ng/L levels using a NOBIAS CHELATE PA1 resin and a sector field (SF) inductively coupled plasma mass spectrometer (ICP-MS). The resin showed excellent adsorption of 232Th at a low pH of 2.4 ± 0.4 in a relatively small volume (200 mL) of seawater. 232Th adsorbed on the resin was easily eluted using 5 mL of 0.8 M HNO3. An enrichment factor of 40 was achieved for 232Th analysis. Ethylenediamine-tetraacetic acid disodium salt dehydrate (EDTA) was used to investigate the effect of 232Th-binding organic ligand on the retention of 232Th on the chelating resin. Results obtained using acidified samples (pH of 2.4 ± 0.4) showed EDTA had no significant effect on 232Th recovery, indicating that at this low pH, 232Th was dissociated from the 232Th-binding organic ligand and quantitatively retained on the NOBIAS CHELATE PA1 resin. The developed analytical method was characterized by a separation and preconcentration taking approximately 4 h and a low detection limit of 0.0038 ng/L for 232Th, and was successfully applied to the determination of 232Th in seawater samples collected from coastal areas, Japan.  相似文献   

20.
A method for classification of the potential spectral interferences in inductively coupled plasma mass spectrometry (ICP-MS) was proposed based on statistical assessment of the interfering signals. The concept was applied to investigate the variety of spectral interferences over the isotopes of Rh, Pd and Pt concerning their analysis in road dust samples. For the significant interferences the applicability of mathematical corrections using two alternative algorithms were studied by uncertainty budget analysis and the approach resulting in lower combined uncertainty of the corrected signals was selected. Further the uncertainty evaluation was used for assessment of the most appropriate Pd isotope to be measured. The adequateness of the mathematical corrections for Rh and Pd was highly relevant to the number of elements causing spectral interferences and the relative analyte/interferent concentrations. This was overcome by preliminary road dust leaching with 0.35 mol l−1 hydrochloric acid. Interferents present as easily soluble salts were substantially removed form the samples while the platinum group metals were not leached which allowed a relative analyte preconcentration to be obtained. For the leached samples the isotopes of Rh and Pd were still spectrally interfered from Sr, Y and Pb but at considerably lesser degree thus after mathematical correction the ICP-MS analysis of Rh, Pd and Pt was reliable and robust using the isotopes 103, 105 and 195, respectively. The method was validated via an alternative analysis based on selective separation of the platinum group metals by microwave-assisted cloud point extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号