首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the present study a cloud point extraction process using mixed micelle of the cationic surfactant cetyl-pyridinium chloride (CPC) and non-ionic surfactant Triton X-114 for extraction of beryllium from aqueous solutions is developed. The extraction of analyte from aqueous samples was performed in the presence of 1,8-dihydroxyanthrone as chelating agent in buffer media of pH 9.5. After phase separation, the surfactant-rich phase was diluted with 0.4 mL of a 60:40 methanol-water mixture containing 0.03 mL HNO3. Then, the enriched analyte in the surfactant-rich phase was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The different variables affecting the complexation and extraction conditions were optimized. Under the optimum conditions (i.e. 1.6 × 10−4 mol L−1 1,8-dihydroxyanthrone, 1.2 × 10−4 mol L−1 CPC, 0.15% (v/v) Triton X-114, 50 °C equilibrium temperature) the calibration graph was linear in the range of 0.006-80 ng mL−1 with detection limit of 0.001 ng mL−1 and the precision (R.S.D.%) for five replicate determinations at 18 ng mL−1 of Be(II) was better than 2.9%. In this manner the preconcentration and enrichment factors were 16.7 and 24.8, respectively. Under the presence of foreign ions no significant interference was observed. Finally, the proposed method was successfully utilized for the determination of this cation in water samples.  相似文献   

2.
A new micelle-mediated extraction method for preconcentration of ultra-trace quantities of beryllium and aluminum as a prior step to their simultaneous spectrophotometric determination has been developed. Chrome Azurol S (CAS), cetyltrimethylammonium bromide (CTAB) and Triton X-114 were used as chelating agent, cationic surfactant for extraction and co-extraction agent, respectively. Mean centering (MC) of ratio spectra has been used for simultaneous analysis of beryllium and aluminum. The optimal extraction and reaction conditions were studied, and the analytical characteristics of the method (e.g., limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 5-40 ng mL−1 of beryllium and 3-100 ng mL−1 of aluminum. The detection limit of the method is 0.98 and 0.52 ng mL−1 for beryllium and aluminum, respectively. The interference effect of some anions and cations was also tested. The method was applied to the simultaneous determination of beryllium in water samples.  相似文献   

3.
A new method has been developed for the determination of gold based on separation and preconcentration with a microcolumn packed with nanometer TiO2 immobilized on silica gel (immobilized nanometer TiO2) prior to its determination by flame atomic absorption spectrometry. The optimum experimental parameters for preconcentration of gold, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Gold could be quantitatively retained by immobilized nanometer TiO2 in the pH range of 8-10, then eluted completely with 0.1 mol L−1 HNO3. The detection limit of this method for Au was 0.21 ng mL−1 with an enrichment factor of 50, and the relative standard deviation (R.S.D.) was 1.8% at the 100 ng mL−1 Au level. The method has been applied for the determination of trace amounts of Au in geological and water samples with satisfactory results.  相似文献   

4.
Xiang Y  Mei L  Li N  Tong A 《Analytica chimica acta》2007,581(1):132-136
A new fluorogenic method for the selective and sensitive determination of chromium(VI) in acidic water using rhodamine B hydrazide was developed. This method was based on the oxidation of non-fluorescent rhodamine B hydrazide by potassium dichromate in acidic aqueous conditions to give rhodamine B, which was highly fluorescent, as a product. With the optimum condition described, the fluorescence enhancement at 585 nm was linearly related to the concentration of chromium(VI) in the range of 5.0 × 10−8 to 2.0 × 10−6 mol L−1 (2.60-104 ng mL−1) with a correlation coefficient of R2 = 0.9993 (n = 18) and a detection limit of 5.5 × 10−9 mol L−1 (0.29 ng mL−1). The R.S.D. was 2.2% (n = 5). The proposed method was also applied to the determination of chromium(VI) in drinking water, river water and synthetic samples.  相似文献   

5.
New mercapto-grafted graphene oxide–magnetic chitosan (GO–MC) has been developed as a novel biosorbent for the preconcentration and extraction of mercury ion from water samples. A facile and ecofriendly synthesis procedure was also developed for modification of GO–MC with 3-mercaptopropyltrimethoxysilane. The prepared nanocomposite material (mercapto/GO–MC) was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and energy-dispersive X-ray spectroscopy (EDX). The mercury analysis was performed by continuous-flow cold vapor atomic absorption spectrometry. The parameters affecting the extraction and preconcentration processes were carried out. The optimum conditions were found to be 60 mg of sorbent, pH of 6.5, 10 min for adsorption time, 3 mL of HCl (0.1 mol L−1)/thiourea (2% w/v) as the eluent and 250 mL for breakthrough volume. An excellent linearity was achieved in the range of 0.12–80 ng mL−1 (R2 = 0.999) at a preconcentration factor of 80. The limit of detection and quantification were achieved as 0.06 ng mL−1 and 0.12 ng mL−1, respectively. A good repeatability was obtained with the relative standard deviation (RSD) of 4.7%. Furthermore, real water samples were analyzed and good recoveries were obtained from 95 to 100%.  相似文献   

6.
A simple and reliable method has been developed for green separation and preconcentration of trace amounts of copper ions in aqueous solutions for subsequent measurement by flame atomic absorption spectrometry (FAAS). The Cu2+ ions are adsorbed selectively and quantitatively during the passage of an aqueous solution through TDMBAC-treated analcime pyrocatechol-immobilized. The retained copper ions were desorbed from the column with 5.0 mL of 4 mol L−1 nitric acid solutions as eluent and were determined by FAAS. The linear range was 0.2-75 ng mL−1 in the original solution with a correlation coefficient of 0.9987. In this case we can concentrate 0.1 μg of copper from 1000 mL of solution and the proposed method permits a large enrichment factor (about 200). The detection limit of the proposed method is 0.05 ng mL−1 in the original solution (2σbl). Determination of copper in standard alloys showed that the proposed method has good accuracy (recovery was more than 97%). The method was successfully applied for recovery and determination of copper in several water samples.  相似文献   

7.
Arpa Şahin C  Durukan I 《Talanta》2011,85(1):657-661
In this article, a new ligandless solidified floating organic drop microextraction (LL-SFODME) method has been developed for preconcentration of trace amount of cadmium as a prior step to its determination by flow injection-flame atomic absorption spectrometry (FI-FAAS). The methodology is based on the SFODME of cadmium with 1-dodecanol in the absence of chelating agent. Several factors affecting the microextraction efficiency, such as, pH, sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate and temperature were investigated and optimized. Under optimized experimental conditions an enhancement factor of 205 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 1.0-25.0 ng mL−1, the limit of detection (3s) was 0.21 ng mL−1 and the limit of quantification (10s) was 0.62 ng mL−1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL−1 cadmium was 4.7%. The developed method was successfully applied to the extraction and determination of cadmium in standard and several water samples and satisfactory results were obtained.  相似文献   

8.
A rapid and sensitive method for the determination of carbendazim (methyl benzimidazole-2-ylcarbamate, MBC) and thiabendazole (TBZ) in water and soil samples was developed by using dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography with fluorescence detection. The water samples were directly used for the DLLME extraction. For soil samples, the target analytes were first extracted by 0.1 mol L−1 HCl. Then, the pH of the extract was adjusted to 7.0 with 2 mol L−1 NaOH before the DLLME extraction. In the DLLME extraction method, chloroform (CHCl3) was used as extraction solvent and tetrahydrofuran (THF) as dispersive solvent. Under the optimum conditions, the enrichment factors for MBC and TBZ were ranged between 149 and 210, and the extraction recoveries were between 50.8 and 70.9%, respectively. The linearity of the method was obtained in the range of 5-800 ng mL−1 for water sample analysis, and 10-1000 ng g−1 for soil samples, respectively. The correlation coefficients (r) ranged from 0.9987 to 0.9997. The limits of detection were 0.5-1.0 ng mL−1 for water samples, and 1.0-1.6 ng g−1 for soil samples. The relative standard deviations (RSDs) varied from 3.5 to 6.8% (n = 5). The recoveries of the method for MBC and TBZ from water samples at spiking levels of 5 and 20 ng mL−1 were 84.0-94.0% and 86.0-92.5%, respectively. The recoveries for soil samples at spiking levels of 10 and 100 ng g−1 varied between 82.0 and 93.4%.  相似文献   

9.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

10.
A sensitive preconcentration methodology for Cd determination at trace levels in water samples was developed in this work. 1-Butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) room temperature ionic liquid (RTIL) was successfully used for Cd preconcentration, as cadmium-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol complex [Cd-5-Br-PADAP]. Subsequently, Cd was back-extracted from the RTIL phase with 500 μL of 0.5 mol L−1 nitric acid and determined by electrothermal atomic absorption spectrometry (ETAAS). A preconcentration factor of 40 was achieved with 20 mL of sample. The limit of detection (LOD) obtained under optimum conditions was 3 ng L−1 and the relative standard deviation (R.S.D.) for 10 replicates at 1 μg L−1 Cd2+ concentration level was 3.5%, calculated at peak heights. The calibration graph was linear from concentration levels near the detection limits up to at least 5 μg L−1. A correlation coefficient of 0.9997 was achieved. Validation of the methodology was performed by standard addition method and analysis of certified reference material (CRM). The method was successfully applied to the determination of Cd in river and tap water samples.  相似文献   

11.
Cobalt(II) phthalocyanine [Co(II)Pc] is used as both an ionophore and chromogen for batch and flow injection potentiometric and spectrophotometric determination of anionic surfactants (SDS), respectively. The potentiometric technique involves preparation of a polymeric membrane sensor by dispersing [Co(II)Pc] in a plasticized PVC membrane. Under batch mode of operation, the sensor displays a near-Nernstian slope of −56.5 mV decade−1, wide response linear range of 7.8 × 10−4 to 8.0 × 10−7 mol L−1, lower detection limit of 2.5 × 10−7 mol L−1 and exhibits high selectivity for anionic surfactants in the presence of many common ions. Under hydrodynamic mode of operation (FIA), the slope of the calibration plot, limit of detection, and working linear range are −51.1 mV decade−1, 5.6 × 10−7 and 1.0 × 10−3 to 1.0 × 10−6 mol L−1, respectively. The spectrophotometric method is based on the use of [Co(II)Pc] solution in dimethylsulfoxide (DMSO) as a chromogenic reagent. The maximum absorption of the reagent at 658 nm linearly decreases with the increase of anionic surfactant over the concentration range 2-30 μg mL−1. The lower limit of detection is 1 μg mL−1 and high concentrations of many interfering ions are tolerated. Flow injection spectrophotometric measurements are carried out by injection of the surfactant test solution in a stream of the reagent in DMSO. The sample throughput, working range and lower detection limit are 25-30 samples h−1, 4-60 and 2 μg mL−1, respectively. The potentiometric and spectrophotometric techniques are applied to the batch and flow injection measurements of anionic surfactants in some commercial detergent products. The results agree fairly well with data obtained using the standard methylene blue spectrophotometric method.  相似文献   

12.
High-performance liquid chromatography (HPLC) with tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection methodology is reported for the determination of the atypical antipsychotic drug quetiapine and the observation of its major active and inactive metabolites in human urine and serum. The method uses a monolithic chromatographic column allowing high flow rates of 3 mL min−1 enabling rapid quantification. Flow injection analysis (FIA) with tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection and HPLC time of flight mass spectrometry (TOF-MS) were used for the determination of quetiapine in a pharmaceutical preparation to establish its suitability as a calibration standard. The limit of detection achieved with FIA was 2 × 10−11 mol L−1 in simple aqueous solution. The limits of detection achieved with HPLC were 7 × 10−8 and 2 × 10−10 mol L−1 in urine and serum, respectively. The calibration range for FIA was between 5 × 10−9 and 1 × 10−6 mol L−1. The calibration ranges for HPLC were between 1 × 10−7-1 × 10−4 and 1 × 10−8-1 × 10−4 mol L−1 in urine and serum, respectively. The quetiapine concentrations in patient samples were found to be 3 × 10−6 mol L−1 in urine and 7 × 10−7 mol L−1 in serum. Without the need for preconcentration, the HPLC detection limits compared favourably with those in previously published methodologies. The metabolites were identified using HPLC-TOF-MS.  相似文献   

13.
Amir Waseem 《Talanta》2007,71(1):56-61
A flow injection (FI) method is reported for the determination of thyroxine based on its enhancement of chemiluminescence (CL) from the Ru(bpy)33+-NADH system. The calibration graph was linear over the range 2.0-10 × 10−8 mol L−1 (r2 = 0.9989) with relative standard deviations (R.S.D.) in the range 2.0-4.5% (n = 4). The limit of detection (3σ blank) was 1.0 × 10−9 mol L−1 with sample throughput of 120 h−1. The effect of some organic compounds, anions and cations were studied for l-thyroxine determination. The method was applied to pharmaceutical preparations and the results obtained were in reasonable agreement with the amount labeled. The method was statistically compared with the results obtained by RIA; no significant disagreement at 95% confidence limit was observed. A calibration graph of NADH over the range 1.3 × 10−8-1.3 × 10−6 mol L−1 was also established (r2 = 0.9992) with R.S.D. in the range1.0-3.5% (n = 4). The limit of detection (3σ) was 1.0 × 10−10 mol L−1 NADH.  相似文献   

14.
The present article reports on the application of modified multiwalled carbon nanotubes (MMWCNTs) as a new, easily prepared and stable solid sorbent for the preconcentration of trace rhodium ion in aqueous solution. Rhodium ions were complexed with 1-(2-pyridylazo)-2-naphthol (PAN) in the pH range of 3.2-4.7 and then the formed Rh-PAN complex was adsorbed on the oxidized MWCNTs. The adsorbed complex was eluted from MWCNTs sorbent with 5.0 mL of N,N-dimethylformamide (DMF). The rhodium in eluted solution was determined by flame atomic absorption spectrometry (FAAS). Linear range for the determination of rhodium was maintained between 0.16 ng mL−1 and 25.0 μg mL−1 in initial solution. Relative standard deviation for the 10 replicated determination of 4.0 μg mL−1 of rhodium was ±0.97%. Detection limit was 0.010 ng mL−1 in initial solution (3Sbl, n = 10) and preconcentration factor was 120. Sensitivity for 1% absorbance of rhodium (III) was 0.112 μg mL−1. The sorption capacity of oxidized MWCNTs for Rh (III) was 6.6 mg g−1. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type, breakthrough volume and interference ions were studied for the preconcentration of Rh3+. The proposed method was successfully applied to the extraction and determination of rhodium in different samples.  相似文献   

15.
Li H  Li J  Hou C  Du S  Ren Y  Yang Z  Xu Q  Hu X 《Talanta》2010,83(2):591-595
A ultrasensitive, simple and convenient electrochemical method was firstly developed for the determination of prochloraz and its metabolites as 2,4,6-trichlorophenol (2,4,6-TCP) using nano-aperture medical stone. Compared with the undoped disposable electrode (UDE), nano-aperture medical stone doped disposable electrode (MSDDE) not only significantly enhances the oxidation peak current of 2,4,6-TCP but also lowers the oxidation overpotential, suggesting that the nano-aperture MSDDE can remarkably improve the sensitivity of 2,4,6-TCP. The experimental conditions such as pH values of buffer solution, the content of nano-aperture medical stone, accumulation potential and time were optimized for the determination of 2,4,6-TCP. At optimal conditions, the oxidation peak current is proportional to the concentration of 2,4,6-TCP over the range from 6.0 × 10−9 to 8.0 × 10−5 mol L−1. Finally, this novel method was successfully employed to detect prochloraz and its metabolites in orange rind with the detection limit of 8.4 × 10−10 mol L−1 (0.3 ng g−1) and the method was validated by gas chromatography.  相似文献   

16.
Tubino M  de Souza RL 《Talanta》2006,68(3):776-780
A quantitative analytical method for the determination of diclofenac in pharmaceutical preparations by diffuse reflectance in the visible region of the spectrum is presented. The color reaction is done directly in the measuring cell immediately after mixing, using small volumes of the analyte solution, of the reagent and of the buffer solutions. All reflectance measurements were carried out in a home made reflectometer equipped with a red LED as light source and a LDR as detector. The calibration curves were constructed from 1.0 to 18 mg mL−1 (about 3.0 × 10−3 to 5.5 × 10−2 mol L−1) of sodium diclofenac or of potassium diclofenac in the analytical solution, with typical correlation coefficients equal to 0.999. The detection limit was estimated to be about 0.7 mg mL−1 (2 × 10−3 mol L−1). The method was applied to determine diclofenac in solid and liquid pharmaceutical preparations. The R.S.D. varied from 2% to 4% depending of the sample. The results were compared with those obtained with the HPLC procedure recommended by the United States Pharmacopoeia using the statistical Student's t-test procedure.  相似文献   

17.
A novel and sensitive cloud point extraction procedure for the determination of trace amounts of malachite green by spectrophotometry was developed. Malachite green was extracted at pH 2.5 mediated by micelles of nonionic surfactant Triton X-100. The extracted surfactant-rich phase was diluted with ethanol and its absorbance was measured at 630 nm. The effect of different variables such as pH, Triton X-100 concentration, cloud point temperature and time and diverse ions was investigated and optimum conditions were established. The calibration graph was linear in the range of 4-500 ng mL−1 of malachite green in the initial solution with r = 0.9996 (n = 10). Detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 and the relative standard deviation (R.S.D.) for 20 and 300 ng mL−1 of malachite green was 1.48 and 1.13% (n = 8), respectively. The method was applied to the determination of malachite green in different fish farming and river water samples.  相似文献   

18.
Locatelli C 《Talanta》2011,85(1):546-550
An extremely sensitive stripping voltammetric procedure for ultra-trace determination of iridium(III) is reported. The method is based on the interfacial accumulation of the iridium(III)-CTAB complex onto the glassy carbon electrode, followed by the catalytic reduction of the adsorbed complex in the presence of bromate. 0.3 mol L−1 acetate buffer pH 4.7 + 6.9 × 10−2 mol L−1 NaBrO3 + 2.7 × 10−5 mol L−1 cetyltrimethylammonium bromide (CTAB) + 0.2 mol L−1 KCl was employed as the supporting electrolyte.The analytical procedure was verified by the analysis of the standard reference materials: Sea Water BCR-CRM 403 and Fresh Water NIST-SRM 1643d.The accuracy, expressed as relative error e%, was satisfactory, being lower than 6%, while precision as repeatability, expressed as relative standard deviation sr%, was generally lower than 5%. The limit of detection was of the order of 2-3 ng L−1.Once set up on the standard reference materials, the analytical procedure was transferred and applied to superficial water sampled in proximity to superhighway and in the Po river mouth area.  相似文献   

19.
We report about the use of carbon paste electrode modified with kaolinite for analytical detection of trace lead(II) in domestic water by differential pulse voltammetry. Kaolinite clay was modified with tripolyphosphate (TPP) by impregnation method. The results show that TPP in kaolinite clay plays an important role in the accumulation process of Pb(II) on the modified electrode surface. The electroanalytical procedure for determination of Pb(II) comprised two steps: chemical accumulation of the analyte under open-circuit conditions, followed by electrochemical detection of the pre-concentrated species using differential pulse voltammetry. The analytical performance of this system has been explored by studying the effects of preconcentration time, carbon paste composition, pH, supporting electrolyte concentration, as well as interferences due to other ions. The calculated detection limit based on the variability of a blank solution (3sb criterion) for 10 measurements was 8.4 × 10−8 mol L−1, and the sensitivity determined from the slope of the calibration graph was 0.910 mol L−1. The reproducibility (RSD) for five replicate measurements at 1.0 mg L−1 lead level was 1.6%. The results indicate that this electrode is sensitive and effective for the determination of Pb2+.  相似文献   

20.
Bis(2-hydroxyacetophenone)butane-2,3-dihydrazone (BHAB) was used as new N-N Schiffs base which plays the role of an excellent ion carrier in the construction of a Cu(II) membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 55% o-nitrophenyloctyl ether (NPOE), 7% BHAB and 8% oleic acid (OA). This sensor shows very good selectivity and sensitivity towards copper ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The effect of membrane composition and pH and influence of additive anionic on the response properties of electrode were investigated. The electrode exhibits a Nernstian behavior (with slope of 29.6 mV per decade) over a very wide concentration range (5.0 × 10−8 to 1.0 × 10−2 mol L−1) with a detection limit of 3.0 × 10−8 mol L−1 (2.56 ng mL−1). It shows relatively fast response time, in whole concentration range (<15 s), and can be used for at least 12 weeks in the pH range of 2.8-5.8. The proposed sensor was successfully used to determination of copper in different water samples and as indicator electrode in potentiometric titration of copper ion with EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号