首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maintaining skin homeostasis is one of the most important factors for skin health. UVB-induced skin photoaging is a difficult problem that has negative impacts on skin homeostasis. So far, a number of compounds have been discovered that improve human skin barrier function and hydration, and are thought to be effective ways to protect skin homeostasis. Potentilla glabra var. mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract (Pg-EE) is a compound that has noteworthy anti-inflammatory properties. However, its skin-protective effects are poorly understood. Therefore, we evaluated the capacity of Pg-EE to strengthen the skin barrier and improve skin hydration. Pg-EE can enhance the expression of filaggrin (FLG), transglutaminase (TGM)-1, hyaluronic acid synthase (HAS)-1, and HAS-2 in human keratinocytes. Moreover, Pg-EE down-regulated the expression of pro-inflammatory cytokines and up-regulated the production of FLG, HAS-1, and HAS-2 suppressed by UVB through inhibition of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathways. Given the above, since Pg-EE can improve skin barrier, hydration and reduce the UVB-induced inflammation on skin, it could therefore be a valuable natural ingredient for cosmetics or pharmaceuticals to treat skin disorders.  相似文献   

2.
《中国化学快报》2023,34(4):107697
Sulfur mustard (SM) can be absorbed by skin quickly and cause serious system damage via reacting with nearly all cell constituents. Until now, there is still lack of effective antidotal therapy for SM and skin protection is highly important to defend SM. In this article, supramolecular liquid barrier based on pillar[5]arene with triethylene oxide substituents (EGP5) has been designed to impede the skin permeation of SM and further interaction with the skin tissue. EGP5 could encapsulate SM within its cavity, with a Ka value of (5.10 ± 0.47) × 102 L/mol. In vitro skin absorption test proved that EGP5 was capable to effectively prevent SM from penetrating through skin. This supramolecular liquid barrier was employed on rat models to systematically evaluate protective effect against SM intoxication. Pretreatment of EGP5 could alleviate skin and system damage induced by SM and improve survival rate of poisoned rat models from 10% to 90%. Additionally, EGP5 served as protective materials could be highly reused after recycling several times. Overall, these findings have provided the first insight into the construction of convenient liquid material for SM protection.  相似文献   

3.
4.
We successfully use a co-precipitation method to prepare inclusion complex between poly(butylene adipate) (PBA) chains (guest component) and urea molecules (host component). The PBA/urea inclusion complex is confirmed to adopt a hexagonal crystal modification with lattice parameters of a = 8.14 Å and c = 10.92 Å, and the interaction between PBA chains and urea is van der Waals force. The singly isolated PBA chains are suggested to take some gauche conformation, which is different from the all-trans conformation in β-form PBA. Furthermore, we employ the isolated PBA chains which are uniformly pre-established in a specific conformation in urea channels to regulate the crystal form of PBA for the first time. After removing the host urea molecules, the coalesced PBA chains are found to solely crystallize into α-form crystals at different coalescing temperatures. By comparing the FTIR spectra, it is found that PBA chains in inclusion complex plausibly contain some similar conformers as those in α-form crystal, which is suggested to be the intrinsic reason for the sole formation of α-form crystals. This research proves that inclusion complex can be used as a very effective method to regulate polymorphism of semi-crystalline polymers.  相似文献   

5.
王学川  晏超 《高分子科学》2014,32(4):488-496
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted.  相似文献   

6.
Water-soluble iron(III) meso-tetrakis(N-methylpyridinum-4-yl)porphyrin (FeTMPyP) was successfully immobilized on single-walled carbon nanotubes (SWNTs) via 1-pyrenebutyric acid (PBA). The formed SWNTs/PBA/FeTMPyP film showed an enhanced electrocatalytic peak at −0.70 V and −0.17 V towards reduction of nitric oxide and oxygen, respectively. SWNTs accelerated the electron transfer between FeTMPyP and electrode, and increased the amount of FeTMPyP adsorbed. FeTMPyP acted as a catalyst to decrease the reduction potential, exhibiting a synergy in electrocatalysis. The excellent electrocatalytic behaviors made SWNTs/porphyrin nanocomposite have a promising potential in fabricating new type of biosensors.  相似文献   

7.
An optical oxygen-sensing material based on the fluorescence intensity changes of pyrene-1-butyric acid (PBA) chemisorption film has been developed and characterised. The fluorescence intensity of PBA film decreased with increase of oxygen concentration. The I0/I100 value of PBA film is estimated to be 6.14±0.15 and large Stern-Volmer constant (KSV=0.028±0.13 Torr−1) is obtained. After irradiation for 24 h with 150 W tungsten lamp, little changes of oxygen-sensing properties were observed. These results indicate that PBA film is highly oxygen-sensitive and photostability device. The response times of the PBA chemisorption film were 10.0 s for switching from argon to oxygen, and 53.0 s for switching from oxygen to argon. Moreover, the optical sensor based on the PBA chemisorption film was applied to the measurement of oxygen concentration in aqueous solution.  相似文献   

8.
We have studied the effect of the redox potential of metallophthalocyanines (M-Pcs) adsorbed on graphite on their electrocatalytic activity for the oxidation of 2-mercaptoethanol (ME). This was achieved by: (i) changing the metal in the phthalocyanine (M-Pc where M=Cr, Mn, Fe, Co, Ni and Cu) and (ii) using cobalt phthalocyanines with electron-donor and electron-withdrawing substituents on the macrocyclic ligand. For phthalocyanines of different metals a plot of log k versus the redox potential of the catalyst gives a straight line of slope 0.10 V decade−1 which is close to the value obtained (0.12 V decade−1) from Tafel plots for all M-Pcs investigated. In contrast, when different substituted cobalt phthalocyanines are compared, a plot of log k versus redox potential gives a straight line of negative slope (−0.240 V decade−1) and the rate decreases with driving force. Since ME electrooxidation in aqueous media most likely proceeds via an inner-sphere mechanism and the rate-determining step is the same for all cobalt phthalocyanines investigated, the decrease in rate constant with driving force may be due to a decrease in the electronic coupling between the cobalt center and the sulfur in ME. Preliminary PM3 semi-empirical theoretical calculations of the electronic coupling associated with the interaction of the metal in the phthalocyanine and the ME molecule support this explanation.  相似文献   

9.
Redox-regulating molecule, recombinant human thioredoxin (rhTRX) which shows anti-inflammatory, and anti-oxidative effects against lipopolysaccharide (LPS)-stimulated inflammation and regulate protein expression levels. LPS-induced reactive oxygen intermediates (ROI) and NO production were inhibited by exogenous rhTRX. We identified up/downregulated intracellular proteins under the LPS-treated condition in exogenous rhTRX-treated A375 cells compared with non-LPS-treated cells via 2-DE proteomic analysis. Also, we quantitatively measured cytokines of in vivo mouse inflammation models using cytometry bead array. Exogenous rhTRX inhibited LPS-stimulated production of ROI and NO levels. TIP47 and ATP synthase may influence the inflammation-related lipid accumulation by affecting lipid metabolism. The modulation of skin redox environments during inflammation is most likely to prevent alterations in lipid metabolism through upregulation of TIP47 and ATP synthase and downregulation of inflammatory cytokines. Our results demonstrate that exogenous rhTRX has anti-inflammatory properties and intracellular regulatory activity in vivo and in vitro. Monitoring of LPS-stimulated pro-inflammatory conditions treated with rhTRX in A375 cells could be useful for diagnosis and follow-up of inflammation reduction related with candidate proteins. These results have a therapeutic role in skin inflammation therapy.  相似文献   

10.
甘志华 《高分子科学》2014,32(9):1243-1252
Oriented and non-oriented Teflon films, which were found to have the same crystalline structure, but different surface morphologies, were used to sandwich poly(butylene adipate)(PBA) films during isothermal crystallization. It was found that both the Teflon surface structure and the PBA polymorphic structure are the determining factors to induce epitaxial crystallization. The oriented Teflon film was able to induce epitaxial crystallization of PBA α crystal, while the non-oriented Teflon did not induce any epitaxial crystallization of PBA. Epitaxial crystallization did not occurred for PBA β crystals between neither the oriented nor the non-oriented Teflon films. The enzymatic degradation rate of PBA films was not determined by the epitaxial crystallization, in fact it was still dependent on the polymorphic crystal structure of PBA. The morphological changes of PBA films after enzymatic degradation confirmed again that the epitaxial crystallization only occurred for the PBA film with α crystal structure which was produced by being sandwiched between oriented Teflon films, and it happened only on the surface of PBA films.  相似文献   

11.
Poly(butyl acrylate) (PBA)/sodium silicate (SS) nanocomposites were prepared via emulsifier-free emulsion technique in presence of Cu(II)/glycine chelate complex and ammonium persulfate (APS) initiator. The strongly hydrophobic PBA was intercalated into the hydrophilic SS layer. Since the interlayers of silicate were filled with sodium cations, the hydrophilic properties were enhanced and lead to high degree of swelling. The formation of the PBA/SS nanocomposite was confirmed by infrared spectra (IR). Furthermore, as evidenced by transmission electron microscopy (TEM), the composite so obtained was found to have nanoscale structure. X-ray diffraction (XRD) was used to characterize the nanoscale dispersion of the layer silicate and useful for measurement of d-spacing in interlayer system. It was found from thermogravimetric analysis that PBA/SS nanocomposites had more thermal stability as compared to raw PBA due to intercalation. Burning test of the nanocomposites performance exhibited a flame retardant property, which was also verified from cone calorimeter analysis. For its commercialization, the ecological friendly nature was studied via biodegradation and was found to have better biodegradability than the raw PBA.  相似文献   

12.
Glaesserella parasuis (G. parasuis) causes inflammation and damage to piglets. Whether polyserositis caused by G. parasuis is due to tight junctions damage and the protective effect of baicalin on it have not been examined. Therefore, this study aims to investigate the effects of baicalin on peritoneal tight junctions of piglets challenged with G. parasuis and its underlying molecular mechanisms. Piglets were challenged with G. parasuis and treated with or without baicalin. RT-PCR was performed to examine the expression of peritoneal tight junctions genes. Immunofluorescence was carried out to detect the distribution patterns of tight junctions proteins. Western blot assays were carried out to determine the involved signaling pathways. Our data showed that G. parasuis infection can down-regulate the tight junctions expression and disrupt the distribution of tight junctions proteins. Baicalin can alleviate the down-regulation of tight junctions mRNA in peritoneum, prevent the abnormalities and maintain the continuous organization of tight junctions. Our results provide novel evidence to support that baicalin has the capacity to protect peritoneal tight junctions from G. parasuis-induced inflammation. The protective mechanisms of baicalin could be associated with inhibition of the activation of PKC and MLCK/MLC signaling pathway. Taken together, these data demonstrated that baicalin is a promising natural agent for the prevention and treatment of G. parasuis infection.  相似文献   

13.
Poly(acrylic acid) (PAA) and poly(tert-butyl acrylate) (PBA) brushes of various grafting densities were prepared via surface-initiated polymerization of tert-butyl acrylate on mica. PAA was prepared by hydrolyzing the PBA brushes. The swelling behavior of PBA and PAA brushes was studied as a function of grafting density by AFM. The swelling of the polymer layer was found to be higher for PAA in water than for the PBA sample swollen with DFM.  相似文献   

14.
Photoaging and glycation stress are major causes of skin deterioration. Oxidative stress caused by ultraviolet B (UVB) irradiation can upregulate matrix metalloprotease 1 (MMP‐1), a major enzyme responsible for collagen damage in the skin. Advanced glycation end products (AGEs) accumulate via gradual formation from skin proteins, especially from long‐lived proteins such as dermal elastin and collagen. Plantamajoside (PM), isolated from Plantago asiatica, has various biological effects including anti‐inflammatory and antioxidant effects. In this study, we assessed the protective effects of PM on a human keratinocyte cell line (HaCaT) and primary human dermal fibroblasts (HDF) against stress caused by glyceraldehyde‐induced AGEs (glycer‐AGEs) with UVB irradiation. We found that PM attenuated UVB‐ and‐glycer‐AGEs‐induced MMP‐1 expression in HaCaT and HDF cells and proinflammatory cytokines expression by inhibiting the phosphorylation of mitogen‐activated protein kinases (MAPKs) activated by reactive oxygen species. Specific inhibitors of NF‐κB and MAPKs attenuated the induced expression of MMP‐1. PM also inhibited the phosphorylation of IκBα, and reduced nuclear translocation of NF‐κB in these cells. Furthermore, PM attenuated the upregulation of receptor for AGEs (RAGE) by glycer‐AGEs with UVB irradiation. Therefore, our findings strongly suggest that PM is a promising inhibitor of skin photoaging.  相似文献   

15.
The marine algae Sargassum sp., Padina sp., Ulva sp., and Gracillaria sp., harvested locally, were investigated for their biosorption performance in the removal of lead, copper, cadmium, zinc, and nickel from dilute aqueous solutions. It was found that the biosorption capacities were significantly affected by solution pH, with higher pH favoring higher metal-ion removal. Kinetic and isotherm experiments were carried out at the optimal pH: at pH 5.0 for lead and copper, and at pH 5.5 for cadmium, zinc, and nickel. The metal removal rates were rapid, with 90% of the total adsorption taking place within 60 min. Sargassum sp. and Padina sp. showed the highest potential for the sorption of the metal ions, with the maximum uptake capacities ranging from 0.61 to 1.16 mmol/g for Sargassum sp. and 0.63 to 1.25 mmol/g for Padina sp. The general affinity sequence for Padina sp. was Pb>Cu>Cd>Zn>Ni, while that for Sargassum sp. was Pb>Zn>Cd>Cu>Ni. XPS and FTIR analysis of Sargassum sp. and Padina sp. revealed the chelating character of the ion coordination to carboxyl groups. It was confirmed that carboxyl, ether, alcoholic, and amino groups are responsible for the binding of the metal ions.  相似文献   

16.
Abundant transition metal borides are emerging as promising electrochemical hydrogen evolution reaction (HER) catalysts which have a potential to substitute noble metals. Those containing graphene-like (flat) boron layers, such as α-MoB2, are particularly promising and their performance can be further enhanced via doping by the second metal. In order to understand intrinsic effect of doping and rationalize selection of dopants, we employ density functional theory (DFT) calculations to study substitutional doping of α-MoB2 by transition metals as a route towards systematic improvement of intrinsic catalytic activity towards HER. We calculated thermodynamic stability of various transition metal elements to select metals which form a stable ternary phase with α-MoB2. We inspected surface stability of dopants and assessed catalytic activity of doped surface through hydrogen binding free energy at various hydrogen coverages. We calculated the reaction barriers and pathways for the Tafel step of HER for the most promising dopants. The results highlight iron as the best dopant, simultaneously lowering the reaction barrier of the Tafel step while having suitable thermodynamic stability within MoB2 lattice.  相似文献   

17.
Epibionts from the red (Hypnea valentiae) and brown seaweeds (Padina tetrastromatica) were rapidly isolated on Zobell agar medium. All the isolates from both the seaweeds (76 numbers) were tested against five human pathogens which were resistant to at least one of the commercially available antibiotics at a minimal concentration of 10 mg. The most antibiotic productive isolate (PT19) from Padina tetrastromatica was extracted and observed to inhibit Klebsiella pneumoniae and Pseudomonas aeruginosa with zone sizes of 15 and 10 mm radius, respectively, at a concentration of 300 μg. Further, a direct bioautography was done and an inhibition was witnessed against the aforementioned pathogens even at 2 μg concentration around three spots (R f values 0.6, 0.7, and 0.8). Preparative thin-layer chromatography yielded a yellow sticky compound (6 mg) which was identified as an alkaloid. The compound on reversed-phase high-pressure liquid chromatography analysis yielded two major and two minor peaks with retention times, 3.1, 4.2, 4.7, and 4.9 min, respectively. The antibacterial compound was recorded 96.6 % pure, and the producer strain was identified as Pseudomonas sp. To our knowledge, we are the first to isolate and identify Pseudomonas from Padina tetrastromatica producing antibacterial alkaloids. This study will pave way for exploring more bacterial load from the said algal groups for bioactivities.  相似文献   

18.
The protective effects of water extracts of djulis (Chenopodium formosanum) (WECF) and their bioactive compounds on particulate matter (PM)-induced oxidative injury in A549 cells via the nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling were investigated. WECF at 50–300 µg/mL protected A549 cells from PM-induced cytotoxicity. The cytoprotection of WECF was associated with decreases in reactive oxygen species (ROS) generation, thiobarbituric acid reactive substances (TBARS) formation, and increases in superoxide dismutase (SOD) activity and glutathione (GSH) contents. WECF increased Nrf2 and heme oxygenase-1 (HO-1) expression in A549 cells exposed to PM. SP600125 (a JNK inhibitor) and U0126 (an ERK inhibitor) attenuated the WECF-induced Nrf2 and HO-1 expression. According to the HPLC-MS/MS analysis, rutin (2219.7 µg/g) and quercetin derivatives (2648.2 µg/g) were the most abundant bioactive compounds present in WECF. Rutin and quercetin ameliorated PM-induced oxidative stress in the cells. Collectively, the bioactive compounds present in WECF can protect A549 cells from PM-induced oxidative injury by upregulating Nrf2 and HO-1 via activation of the ERK and JUN signaling pathways.  相似文献   

19.
The role of the torsional potential in bulk polymer chain dynamics is investigated via molecular dynamics simulation using polyethylene as a model system. A number of three-fold barrier values, both greater and less than the standard one, were invoked. The one-fold potential that determines the gauche vs trans energy difference was also varied. For each of the selected torsional potentials, the MD volumetric glass transition temperature, Tg, was located. It was found that Tg is quite sensitive to the three-fold barrier magnitude, moving from below 100 K to nearly 400 K as the barrier goes from zero to twice the standard value. However Tg was found to be quite insensitive to the gauche trans energy difference. Details of the conformational dynamics were studied for the case of a zero torsional potential. This included the rate and location of conformational transitions, the decay of the torsional angle autocorrelation function (ACF) and the cooperativity of conformational transitions, all as a function of temperature. The temperature dependence of the conformational transition rate remains Arrhenius at all temperatures. The relaxation time characterizing the torsional angle ACF decay exhibits WLF temperature behavior. The conformational transitions are randomly distributed over the bonds at high temperature, but near Tg they become spatially heterogeneous and localized. The transitions show next-neighbor correlation as well as self-correlated forward-backward transitions. All of these features are similar to those found in previous simulations under the standard torsional potential.  相似文献   

20.
Osteoblast cell injury is a type of degenerative disorder characterized by osteolysis. Levan polysaccharide is an active component of Erwinia herbicola, which shows potential anti-inflammatory and antioxidant properties. However, the protective effects of levan on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress injury in osteoblast cells as an in vitro model of osteolysis remain largely unknown. The present study aimed to explore the functions of levan in LPS-triggered inflammation and oxidative stress in osteoblast cells (MC3T3-E1). The protective effects of levan on LPS-induced inflammatory and oxidative stress responses in MC3T3-E1 cells were assessed by quantification of superoxide dismutase (SOD) and catalase (CAT) activity as well as enzyme-linked immunosorbent assay (ELISA) for determination of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Also, the key signaling pathway of ChemR23 was determined by qPCR analysis. Results showed that levan significantly alleviated LPS-induced deactivation of SOD and CAT activity. Levan also downregulated the expression of IL-6, TNF-α, and ChemR23 at mRNA level. These findings indicated that levan may protect MC3T3-E1 cells against LPS-triggered oxidative stress, and inflammation via regulation of ChemR23. This data may provide a potential basis for further clinical investigation of levan in the prevention and treatment of LPS-triggered bone resorption and osteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号