首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In vivo cell electroporation is the basis of DNA electrotransfer, an efficient method for non-viral gene therapy using naked DNA. The electric pulses have two roles, to permeabilize the target cell plasma membrane and to transport the DNA towards or across the permeabilized membrane by electrophoresis. For efficient electrotransfer, reversible undamaging target cell permeabilization is mandatory. We report the possibility to monitor in vivo cell electroporation during pulse delivery, and to adjust the electric field strength on real time, within a few microseconds after the beginning of the pulse, to ensure efficacy and safety of the procedure. A control algorithm was elaborated, implemented in a prototype device and tested in luciferase gene electrotransfer to mice muscles. Controlled pulses resulted in protection of the tissue and high levels of luciferase in gene transfer experiments where uncorrected excessive applied voltages lead to intense muscle damage and consecutive loss of luciferase gene expression.  相似文献   

2.
Lin YC  Li M  Wu CC 《Lab on a chip》2004,4(2):104-108
Simulation and experimental demonstration of the in vitro gene delivery enhancement using electrostatic forces and electroporation (EP) microchips were conducted. Electroporation is a technique with which DNA molecules can be delivered into cells using electric field pulses. This study demonstrates that plasmid DNA can be attracted to the cell surfaces at the specific regions using an electrostatic force. Therefore, the DNA concentration on the cell surface is dramatically increased, which highly enhances the gene transfection efficiency compared to that without an attracting-electric field. The electrostatic force can be designed into specific regions, where the DNA plasmids are attracted to, to provide the region-targeting function. In this micro-device, the top electrode and the interdigitated electrodes provided the DNA attracting-electric field, and the interdigitated electrodes provided adequate electric fields for the electroporation process on the chip surface. Using the EP microchip, cells could be manipulated in situ without detachment if adherent cells were used for electroporation. Five different cells of two different types, primary cell and cell line, were successfully transfected under multi-pulse or single pulse electric field stimulation without applying an attracting-electric field. This study simulated and analyzed the electric field distributions at the DNA attracting and electroporation processes, and successfully demonstrated that the electrostatic force attracted DNA plasmids to specific regions and highly enhanced the gene delivery. In summary, this EP microchip should provide many potential applications for gene therapy.  相似文献   

3.
Poly( , -lactic acid) (PLA)-based particles, obtained by the emulsification–diffusion process, were surface-modified by electrostatic adsorption of poly(ethylenimine) (PEI). The amount of immobilized PEI and the conformation of the polycation at the interface were dependent on the ionic strength of the media. In the absence of salt, or at low ionic strength, the adsorbed amounts of PEI, the surface charge and the critical concentration for coagulation (CCC) of the modified particles were lower than when the adsorption was achieved at elevated ionic strength. Moreover, at low salt concentration, isotherms were of Langmuir type, suggesting the formation of monolayers. The differences in PEI surface conformation had consequences on the DNA binding capacity of the particles, on the plasmid DNA conformation at the interface and on the DNA release in various media. When PEI was adsorbed in a 50 mM phosphate buffer, the amount of bound plasmid and the strength of binding were higher than when PEI was adsorbed in water. From these differences in physico-chemical properties, one can expect differences in transfection or immunization performances of the vectors.  相似文献   

4.
To achieve the maximal introduction of plasmid DNA into cells and, at the same time, to prevent undesirable cell deaths, electrotransfection conditions should be determined for every single cell type individually. In the present study, we determined the optimal electrotransfection parameters for in vitro transfection of B16F1, SA1, LPB, SCK, L929 and CHO cells. Some of these varying parameters were electric field strength, number of applied pulses and their duration, osmolarity of electroporation buffer, plasmid DNA concentration and temperature at which the electroporation was carried out. The maximal transfection rates at optimal electrotransfection parameters in B16F1, SA1, LPB, SCK, L929 and CHO were 85%, 40%, 60%, 1%, 40% and 65%, respectively. The obtained results confirmed that the electroporation is a useful procedure for an in vitro transfection of the majority of mammalian cells. The method, if optimized, may generate reproducibly high proportion of transfected cells among the cell types that are sensitive to electric field action. Thus, the determined parameters could serve for the subsequent implementations of this method.  相似文献   

5.
We studied the influences of imidazolium‐based ionic liquids as additives in low ionic strength phosphate solution on releasing DNA from polyamidoamine dendrimer‐grafted silica nanoparticle surfaces. The effects of the side‐chain length of the imidazolium group, the anion and the concentration of the ionic liquid, the generation of the dendrimer, and the pH and the concentration of the release solution were investigated. It was found that addition of 4 mM 1‐hexyl‐3‐methylimidazolium bromide to 5 mM phosphate at pH 11 could markedly promote the desorption of DNA fragments, with a desorption efficiency of 99.0%. Compared with the conventional strategies employing high‐salt solutions or elevated temperature for acceptable recoveries, the method described here enabled quick release of DNA fragments that permitted direct, accurate analysis, and further treatment without desalting.  相似文献   

6.
The experiments reported here are aimed at obtaining optimum conditions for gene transformation after electric field pulses. Saccharomyces cerevisiae DBY746 is used as the recipient strain for shuttle plasmid (YRp group). From the relationship between the optimum electric field conditions and the transformation efficiency it is discovered that the maximum transformation efficiency appears at a wide pulse length of 400 μs with an electric field strength of 4 kV/cm, yielding up to 273 transformants/μg DNA. The electroporation unit used in the experiment is a home-made set featuring simplicity, readiness and practicality.  相似文献   

7.
N,N'-Alkylmethylimidazolium cations have been separated in NACE when one of the N,N'-dialkylimidazolium salts (ionic liquids (ILs)) was used as an electrolyte additive to the organic solvent separation medium. The separated species were 1-methyl-, 1-ethyl-, 1-butyl-, 1-octyl-, 1-decyl-3-methylimidazolium and N-butyl-3-methylpyridinium cations and BGE composed of 1-ethyl-3-methylimidazolium ethylsulfate or 1-butyl-3-methylimidazolium trifluoroacetate [BMIm][FAcO] (A6; B2) diluted in ACN. It was demonstrated that contactless conductivity detection (CCD) may be applied to monitoring the separation process in nonaqueous separation media, allowing to use the UV light-absorbing imidazolium-based electrolyte additives. There could be marked three concentration regions of added ILs; at first ionic strength of BGE below 1-2 mM, and then the actual electrophoretic mobility of analytes rises from 0. At concentrations above 1-2 mM, the added IL facilitated separation. In concentration region of 1-20 mM, the actual electrophoretic mobility of analyzed imidazolium cations was increasing with decrease in separation medium ionic strength. At higher concentrations of BGE (above 30 mM), the conductivity of the separation media became too high for this detector. Some organic dyes were also successfully separated and detected by contactless conductivity detector in a 20 mM A6 separation electrolyte in ACN.  相似文献   

8.
DNA helix invasion by P-loop forming peptide nucleic acids (PNAs) is extremely sensitive to increased ionic strength as this stabilizes the DNA duplex. To address this, the DNA intercalator 9-aminoacridine was conjugated to helix invading PNAs, and the duplex DNA binding efficiency of such constructs was measured at different ionic strength conditions by electrophoretic mobility shift analysis. Remarkably, at physiogically relevant ionic strength (140 mM K+/10 mM Na+, 2 mM Mg2+), acridine conjugated PNAs showed 20-150-fold superior binding to a cognate sequence target as compared to the conventional PNAs. This enhancement occurred without compromising the sequence specificity of binding. Thus, simply conjugating the DNA intercalator 9-aminoacridine to PNA represents a major step toward the development of helix invading constructs for in vivo applications such as gene targeting.  相似文献   

9.
Changes of the solution pH due to exposure by high-voltage electric pulses   总被引:1,自引:0,他引:1  
The change of the pH of a NaCl solution (139-149 mM NaCl) buffered with 5-15 mM sodium phosphates (pH 7.4) during electromanipulation was studied. It has been determined that an increase in the pH value of electroporation solution of a whole chamber volume, caused by the application of electric field pulses, commonly used in cell electromanipulation procedures, can exceed 1-2 pH units. Several materials for the cathode were tested. In all cases a stainless steel anode was utilized. The aluminum cathode gave a two-fold greater DeltapH in comparison with platinum, copper or stainless steel cathodes. In addition, a substantial release of aluminum (up to 1 mg/l) from the cathode was observed. It has also been found that the shift in pH depended on the medium conductivity: DeltapH of the solution, in which sucrose was substituted for NaCl, was about 5 times less. On the basis of the results obtained here, to avoid the plausible undesirable consequences of the cathodic electrolysis processes, in particular under the conditions of strong electric treatment, it could be recommended that chambers with aluminum electrodes not be utilized and one should use strongly buffered solutions of low conductivity and alternating current (sine or square wave) bipolar electric pulses.  相似文献   

10.
The hydrodynamic properties and pore-structure of monoliths based on functionalized poly(glycidyl methacrylate-ethylene dimethacrylate) were characterised by pulse response experiments using different probes representing a wide range of molecular mass. On a small scale, band spreading was found to be caused to the extent of more than 90% by extra-column effects. These monoliths have large channel diameters, providing a suitable chromatography adsorbent for processing of large molecules. Dynamic and static binding capacity for plasmid DNA was investigated. For our model plasmid, consisting of 4.9 kbp, a capacity of 7 mg/mL was observed in comparison to 0.3 mg/mL for a conventional medium designed for protein separation. When plasmids were loaded on the monolith a gradual increase in pressure drop was observed. The channels filled up and the cross-sectional area available for liquid flow decreased. Therefore, a higher pressure drop was observed during elution. This is caused by (i) shrinking of the channels as effect of the high salt concentration, (ii) high viscosity of the mobile phase due to high concentration of plasmids, and (iii) an increase of the hydrodynamic radius of the plasmid with salt concentration from 45 nm at 150 mM to 70 nm at 2 M NaCl, as measured by dynamic light scattering. These types of monoliths are considered to be the preferred adsorbents for plasmid separation.  相似文献   

11.
Gene electrotransfer is a non-viral technique using electroporation for gene transfection. The method is widely used in the preclinical setting and results from the first clinical study in tumours have been published. However, the preclinical studies, which form the basis for the clinical trials, have mainly been performed in rodents and the body of evidence on electrode choice and optimal pulsing conditions is limited.We therefore tested plate and needle electrodes in vivo in porcine skin, which resembles human skin in structure. The luciferase (pCMV-Luc) gene was injected intradermally and subsequently electroporated. Simultaneously, studies with gene electrotransfer to porcine skin using plasmids coding for green fluorescent protein (GFP) and betagalactosidase were performed.Interestingly, we found needle electrodes to be more efficient than plate electrodes (p < 0.001) and electric field calculations showed that penetration of the stratum corneum led to much more homogenous field distribution at the DNA injection site. Furthermore, we have optimised the electric pulse regimens for both plate and needle electrodes using a range of high voltage and low voltage pulse combinations.In conclusion, our data support that needle electrodes should be used in human clinical studies of gene electrotransfer to skin for improved expression.  相似文献   

12.
Electroporation is a phenomenon during which exposure of a cell to high voltage electric pulses results in a significant increase in its membrane permeability. Aside from the fact that after the electroporation the cell membrane becomes more permeable, the cells' geometrical and electrical properties change considerably. These changes enable use of the force on dielectric particles exposed to non-uniform electric field (dielectrophoresis) for separation of non-electroporated and electroporated cells. This paper reports the results of an attempt to separate non-electroporated and electroporated cells by means of dielectrophoresis. In several experiments we managed to separate the non-electroporated and electroporated cells suspended in a medium with conductivity 0.174 S/m by exposing them to a non-uniform electric field at a frequency of 2 MHz. The behaviour of electroporated cells exposed to dielectrophoresis raises the presumption that in addition to conductivity, considerable changes in membrane permittivity occur after the electroporation.  相似文献   

13.
交替马来酸酐共聚物多缩乙二醇酯盐络合物的离子传导性   总被引:4,自引:1,他引:4  
交替马来酸酐共聚物多缩乙二醇酯盐络合物的离子传导性丁黎明,林云青,周子南,王佛松(中国科学院长春应用化学研究所,长春,130022)关键词高分子固体电解质,离子电导率,玻璃化转变温度,离子传输,VTF方程1973年,P.V.Wright等人[1]首次...  相似文献   

14.
Interstitial transport of DNA is a rate-limiting step in electric field-mediated gene delivery in vivo. Interstitial transport of macromolecules, such as plasmid DNA, over a distance of several cell layers, is inefficient due to small diffusion coefficient and inadequate convection. Therefore, we explored electric field as a novel driving force for interstitial transport of plasmid DNA. In this study, agarose gels were used to mimic the interstitium in tissues as they had been well characterized and could be prepared reproducibly. We measured the electrophoretic movements of fluorescently labeled plasmid DNA in agarose gels with three different concentrations (1.0%, 2.0% and 3.0%) subjected to electric pulses at three different field strengths (100, 200 and 400 V/cm) and four different pulse durations (10, 50, 75, 99 ms). We observed that: (1) shorter pulses (10 ms) were not as efficient as longer pulses in facilitating plasmid transport through agarose gels; (2) plasmid electromobility reached a plateau at longer pulse durations; and (3) plasmid electromobility increased with applied electric energy, up to a threshold, in all three gels. These data suggested that both pulse strength and duration needed to be adequately high for efficient plasmid transport through extracellular matrix. We also found that electric field was better than concentration gradient of DNA as a driving force for interstitial transport of plasmid DNA.  相似文献   

15.
Gene electrotransfer is an established method for gene delivery which uses high-voltage pulses to increase permeability of cell membrane and thus enables transfer of genes. Currently, majority of research is focused on improving in vivo transfection efficiency, while mechanisms involved in gene electrotransfer are not completely understood. In this paper we analyze the mechanisms of gene electrotransfer by using combinations of high-voltage (HV) and low-voltage pulses (LV) in vitro. We applied different combinations of HV and LV pulses to CHO cells and determined the transfection efficiency. We obtained that short HV pulses alone were sufficient to deliver DNA into cells for optimal plasmid concentrations and that LV pulse did not increase transfection efficiency, in contrast to reported studies in vivo. However, for sub-optimal plasmid concentrations combining HV and LV pulses increased transfection rate. Our results suggest that low-voltage pulses increase transfection in conditions where plasmid concentration is low, typically in vivo where mobility of DNA is limited by the extracellular matrix. LV pulses provide additional electrophoretic force which drags DNA toward the cell membrane and consequently increase transfection efficiency, while for sufficiently high concentrations of the plasmid (usually used in vitro) electrophoretic LV pulses do not have an important role.  相似文献   

16.
In the present study, we compared the performances of size-exclusion chromatography for the purification of plasmid DNA when different concentrations (0.5M, 1M, 2M, respectively) of two types of salt (NaCl and (NH(4))(2)SO(4)) are present in running buffers. Our experiment results displayed that it is not only the resolution of RNA but also those of supercoiled plasmid DNA and host's genomic DNA were increased greatly in the presence of high concentration of water-structure salt. We deduce that two separation modes may be involved in the process: The supercoiled plasmid DNA is influenced mainly by compaction effect and eluted in the size-exclusion mode; whereas, RNA and genomic DNA are influenced mainly by hydrophobic effect due to their stretched and loose structures and eluted in the interaction mode. This method led to an improved efficiency of size-exclusion chromatography.  相似文献   

17.
The adsorption of calf-thymus DNA-fragments of 300 +/- 50 base pairs (bp) to the outer membrane monolayer of unilamellar lipid vesicles in the presence of Ca2+ ions has been quantified by the standard method of chemical relaxation spectrometry using polarized light. The vesicles of radius a = 150 +/- 45 nm are prepared from bovine brain extract type III containing 80-85% phosphatidylserine (PS) and palmitoyl-oleoyl-phosphatidylcholine (POPC) in the molar ratio PS : 2POPC; total lipid concentration [L(t)] = 1 mM in 1 mM HEPES buffer, pH 7.4 at T = 293 K (20 degrees C). The turbidity relaxations of vesicle suspensions, at the wavelength lambda = 365 nm at two characteristic electric field strengths are identified as electroelongation of the whole vesicle coupled to smoothing of thermal membrane undulations and membrane stretching, and at higher fields, to membrane electroporation (MEP). The elongation kinetics indicates that the DNA adsorption renders the membrane more flexible and prone to membrane electroporation (MEP). Remarkably, it is found that the Ca-mediated adsorption of DNA (D) decreases both, bending rigidity kappa and stretching modulus K, along an unique Langmuir adsorption isotherm for the fraction of bound DNA at the given Ca concentration [Ca(t)] = 0.25 mM. The characteristic chemo-mechanical parameter of the isotherm is the apparent dissociation equilibrium constant K(D,Ca) = 100 +/- 10 microM (bp) of the ternary complex DCaB of DNA base pairs (bp) and Ca binding to sites B on the outer vesicle surface. Whereas both kappa and K decrease in the presence of high electric fields (E), the key parameter K(D,Ca) is independent of E in the range 0 < or = E/(kV cm(-1)) < or = 40.  相似文献   

18.
The retention of different physical forms of DNA by an electric field in a chromatography system was studied. We were able to effectively separate the supercoiled and the open circular forms of plasmid DNA using this type of electrochromatography system. Chromatography columns were packed with porous beads, and an axial electric field was applied so that convective buffer flow opposed the direction of electrophoresis of the DNA. A model system composed of approximately equal amounts of the super-coiled and open circular forms of the plasmid pBR 322 (4322 base pairs) was used to test the separation. Chromatography beads (agarose-based) with different porosities were used to determine the effect of the stationary phase on the separation. The porous media did not have a major effect on the separation, but the best separations were obtained using porous chromatography media made with the highest agarose concentration (10% agarose). Selective elution of plasmid DNA with different forms was obtained by either increasing the flow rates or decreasing the electric field strength (by steps or a gradient). In all the separations, the more compact supercoiled form of the plasmid was retained less strongly than either the open circular form (nicked) or the linear form. High molecular weight host genomic DNA was more strongly retained than the plasmid DNA. Increasing the ionic strength of the buffer improved resolution and capacity. The capacity of the separation was determined by injecting increasing amounts of plasmid DNA. Satisfactory separation was obtained at sample loading of up to 360 microg of total DNA on a column with dimensions of 2.5 by 11 cm (bed volume of 54 mL). The retention of DNA depends upon a counter-current flow of electrophoresis and convective flow and could be regarded as a type of field flow fractionation. The retention of the DNA by the electric field and flow is discussed in relation to the diffusion coefficients of the DNA.  相似文献   

19.
Kim J  Gale BK 《Lab on a chip》2008,8(9):1516-1523
A nanoporous aluminium oxide membrane was integrated into a microfluidic system designed to extract hgDNA (human genomic DNA) from lysed whole blood. The effectiveness of this extraction system was determined by passing known concentrations of purified hgDNA through nanoporous membranes with varying pore sizes and measuring the amount of hgDNA deposited on the membrane while also varying salt concentration in the solution. DNA extraction efficiency increased as the salt concentration increased and nanopore size decreased. Based on these results, hgDNA was extracted from whole blood while varying salt concentration, nanopore size and elution buffer to find the conditions that yield the maximum concentration of hgDNA. The optimal conditions were found to be using a low-salt lysis solution, 100 nm pores, and a cationic elution buffer. Under these conditions the combination of flow and ionic disruption were sufficient to elute the hgDNA from the membrane. The extracted hgDNA sample was analysed and evaluated using PCR (polymerase chain reaction) to determine whether the eluted sample contained PCR inhibition factors. Eluted samples from the microfluidic system were amplified without any inhibition effects. PCR using extracted samples was demonstrated for several genes of interest. This microfluidic DNA extraction system based on embedded membranes will reduce the time, space and reagents needed for DNA analysis in microfluidic systems and will prove valuable for sample preparation in lab-on-a-chip applications.  相似文献   

20.
In the present study, we found that plasmid DNA could induce single-chained cationic surfactants cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and dodecyltriethyl ammonium bromide (DEAB) to form vesicles once its concentration reached a critical value. Moreover, the gene for follicle-stimulating hormone was delivered into cells with these single-chained cationic surfactant/DNA vesicles and the transfection efficiency was comparable to that with lipofectamine? 2000, a famous and widely used commercial transfection reagent, and also to that using electroporation method, although it was generally thought conventional single-chained cationic surfactant was not suitable for gene transfer. The conventional single-chained cationic surfactant is very cheap and stable and the vesicles are very easy to be prepared. Thereby, this study may suggest that the vesicles formed between plasmid DNA and surfactant should be prospective to transfer DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号