首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
While solving a question on the list coloring of planar graphs, Dvo?ák and Postle introduced the new notion of DP-coloring (they called it correspondence coloring). A DP-coloring of a graph G reduces the problem of finding a coloring of G from a given list L to the problem of finding a “large” independent set in the auxiliary graph H(G,L) with vertex set {(v, c): vV (G) and cL(v)}. It is similar to the old reduction by Plesnevi? and Vizing of the k-coloring problem to the problem of finding an independent set of size |V(G)| in the Cartesian product GK k, but DP-coloring seems more promising and useful than the Plesnevi?–Vizing reduction. Some properties of the DP-chromatic number χ DP (G) resemble the properties of the list chromatic number χ l (G) but some differ quite a lot. It is always the case that χ DP (G) ≥ χ l (G). The goal of this note is to introduce DP-colorings for multigraphs and to prove for them an analog of the result of Borodin and Erd?s–Rubin–Taylor characterizing the multigraphs that do not admit DP-colorings from some DP-degree-lists. This characterization yields an analog of Gallai’s Theorem on the minimum number of edges in n-vertex graphs critical with respect to DP-coloring.  相似文献   

2.
A k-total coloring of a graph G is a mapping ?: V (G) ? E(G) → {1; 2,..., k} such that no two adjacent or incident elements in V (G) ? E(G) receive the same color. Let f(v) denote the sum of the color on the vertex v and the colors on all edges incident with v: We say that ? is a k-neighbor sum distinguishing total coloring of G if f(u) 6 ≠ f(v) for each edge uvE(G): Denote χ Σ (G) the smallest value k in such a coloring of G: Pil?niak and Wo?niak conjectured that for any simple graph with maximum degree Δ(G), χ Σ ≤ Δ(G)+3. In this paper, by using the famous Combinatorial Nullstellensatz, we prove that for K 4-minor free graph G with Δ(G) > 5; χ Σ = Δ(G) + 1 if G contains no two adjacent Δ-vertices, otherwise, χ Σ (G) = Δ(G) + 2.  相似文献   

3.
An edge-coloring of a graph G is an assignment of colors to all the edges of G. A g c -coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least g(v) times. The maximum integer k such that G has a g c -coloring with k colors is called the g c -chromatic index of G and denoted by \(\chi\prime_{g_{c}}\)(G). In this paper, we extend a result on edge-covering coloring of Zhang and Liu in 2011, and give a new sufficient condition for a simple graph G to satisfy \(\chi\prime_{g_{c}}\)(G) = δ g (G), where \(\delta_{g}\left(G\right) = min_{v\epsilon V (G)}\left\{\lfloor\frac{d\left(v\right)}{g\left(v\right)}\rfloor\right\}\).  相似文献   

4.
Let G be a simple graph, let d(v) denote the degree of a vertex v and let g be a nonnegative integer function on V (G) with 0 ≤ g(v) ≤ d(v) for each vertex vV (G). A g c -coloring of G is an edge coloring such that for each vertex vV (G) and each color c, there are at least g(v) edges colored c incident with v. The g c -chromatic index of G, denoted by χ′g c (G), is the maximum number of colors such that a gc-coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g (G) or δ g (G) ? 1, where \({\delta _g}\left( G \right) = \mathop {\min }\limits_{v \in V\left( G \right)} \left\lfloor {d\left( v \right)/g\left( v \right)} \right\rfloor \). A graph G is nearly bipartite, if G is not bipartite, but there is a vertex uV (G) such that G ? u is a bipartite graph. We give some new sufficient conditions for a nearly bipartite graph G to have χ′g c (G) = δ g (G). Our results generalize some previous results due to Wang et al. in 2006 and Li and Liu in 2011.  相似文献   

5.
Let G and H be two graphs. We say that G induces H if G has an induced subgraph isomorphic to H: A. Gyárfás and D. Sumner, independently, conjectured that, for every tree T. there exists a function f T ; called binding function, depending only on T with the property that every graph G with chromatic number f T (ω(G)) induces T. A. Gyárfás, E. Szemerédi and Z. Tuza confirmed the conjecture for all trees of radius two on triangle-free graphs, and H. Kierstead and S. Penrice generalized the approach and the conclusion of A. Gyárfás et al. onto general graphs. A. Scott proved an interesting topological version of this conjecture asserting that for every integer k and every tree T of radius r, every graph G with ω(G) ? k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(14 r-1(r - 1)!) times. We extend the approach of A. Gyárfás and present a binding function for trees obtained by identifying one end of a path and the center of a star. We also improve A. Scott's upper bound by modifying his subtree structure and partition technique, and show that for every integer k and every tree T of radius r, every graph with ω(G) ? k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(6 r?2) times.  相似文献   

6.
Let G be a connected graph with vertex set V(G) = {v1, v2,..., v n }. The distance matrix D(G) = (d ij )n×n is the matrix indexed by the vertices of G, where d ij denotes the distance between the vertices v i and v j . Suppose that λ1(D) ≥ λ2(D) ≥... ≥ λ n (D) are the distance spectrum of G. The graph G is said to be determined by its D-spectrum if with respect to the distance matrix D(G), any graph having the same spectrum as G is isomorphic to G. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their D-spectra.  相似文献   

7.
A vertex coloring of a graph G is called r-acyclic if it is a proper vertex coloring such that every cycle D receives at least min{|D|, r} colors. The r-acyclic chromatic number of G is the least number of colors in an r-acyclic coloring of G. We prove that for any number r ≥ 4, the r-acyclic chromatic number of any graph G with maximum degree Δ ≥ 7 and with girth at least (r ? 1)Δ is at most (4r ? 3)Δ.  相似文献   

8.
Define a k-minimum-difference-representation (k-MDR) of a graph G to be a family of sets \({\{S(v): v\in V(G)\}}\) such that u and v are adjacent in G if and only if min{|S(u)?S(v)|, |S(v)?S(u)|} ≥ k. Define ρ min(G) to be the smallest k for which G has a k-MDR. In this note, we show that {ρ min(G)} is unbounded. In particular, we prove that for every k there is an n 0 such that for n > n 0 ‘almost all’ graphs of order n satisfy ρ min(G) > k. As our main tool, we prove a Ramsey-type result on traces of hypergraphs.  相似文献   

9.
Let G be a graph and let its maximum degree and maximum average degree be denoted by Δ(G) and mad(G), respectively. A neighbor sum distinguishing k-edge colorings of graph G is a proper k-edge coloring of graph G such that, for any edge uvE(G), the sum of colors assigned on incident edges of u is different from the sum of colors assigned on incident edges of v. The smallest value of k in such a coloring of G is denoted by χ(G). Flandrin et al. proposed the following conjecture that χ (G) ≤ Δ(G) + 2 for any connected graph with at least 3 vertices and GC5. In this paper, we prove that the conjecture holds for a normal graph with mad(G) < \(\tfrac{{37}}{{12}}\) and Δ(G) ≥ 7.  相似文献   

10.
For a graph G, we denote by p(G) and c(G) the number of vertices of a longest path and a longest cycle in G, respectively. For a vertex v in G, id(v) denotes the implicit degree of v. In this paper, we obtain that if G is a 2-connected graph on n vertices such that the implicit degree sum of any three independent vertices is at least n + 1, then either G contains a hamiltonian path, or c(G) ≥ p(G) ? 1.  相似文献   

11.
A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let χ_Σ'(G) denote the smallest value k in such a coloring of G. This parameter makes sense for graphs containing no isolated edges(we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 5/2,then χ_Σ'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.  相似文献   

12.
Let G be a graph with vertex set V(G). For any integer k ≥ 1, a signed total k-dominating function is a function f: V(G) → {?1, 1} satisfying ∑xN(v)f(x) ≥ k for every vV(G), where N(v) is the neighborhood of v. The minimum of the values ∑vV(G)f(v), taken over all signed total k-dominating functions f, is called the signed total k-domination number. In this note we present some new sharp lower bounds on the signed total k-domination number of a graph. Some of our results improve known bounds.  相似文献   

13.
Token Graphs     
For a graph G and integer k ≥ 1, we define the token graph F k (G) to be the graph with vertex set all k-subsets of V(G), where two vertices are adjacent in F k (G) whenever their symmetric difference is a pair of adjacent vertices in G. Thus vertices of F k (G) correspond to configurations of k indistinguishable tokens placed at distinct vertices of G, where two configurations are adjacent whenever one configuration can be reached from the other by moving one token along an edge from its current position to an unoccupied vertex. This paper introduces token graphs and studies some of their properties including: connectivity, diameter, cliques, chromatic number, Hamiltonian paths, and Cartesian products of token graphs.  相似文献   

14.
Let G = (V,A) be a digraph and k ≥ 1 an integer. For u, vV, we say that the vertex u distance k-dominate v if the distance from u to v at most k. A set D of vertices in G is a distance k-dominating set if each vertex of V D is distance k-dominated by some vertex of D. The distance k-domination number of G, denoted by γ k (G), is the minimum cardinality of a distance k-dominating set of G. Generalized de Bruijn digraphs G B (n, d) and generalized Kautz digraphs G K (n, d) are good candidates for interconnection networks. Denote Δ k := (∑ j=0 k d j )?1. F. Tian and J. Xu showed that ?nΔ k ? γ k (G B (n, d)) ≤?n/d k? and ?nΔ k ? ≤ γ k (G K (n, d)) ≤ ?n/d k ?. In this paper, we prove that every generalized de Bruijn digraph G B (n, d) has the distance k-domination number ?nΔ k ? or ?nΔ k ?+1, and the distance k-domination number of every generalized Kautz digraph G K (n, d) bounded above by ?n/(d k?1+d k )?. Additionally, we present various sufficient conditions for γ k (G B (n, d)) = ?nΔ k ? and γ k (G K (n, d)) = ?nΔ k ?.  相似文献   

15.
A Hamilton cycle in a graph Γ is a cycle passing through every vertex of Γ. A Hamiltonian decomposition of Γ is a partition of its edge set into disjoint Hamilton cycles. One of the oldest results in graph theory is Walecki’s theorem from the 19th century, showing that a complete graph K n on an odd number of vertices n has a Hamiltonian decomposition. This result was recently greatly extended by Kühn and Osthus. They proved that every r-regular n-vertex graph Γ with even degree r = cn for some fixed c > 1/2 has a Hamiltonian decomposition, provided n = n(c) is sufficiently large. In this paper we address the natural question of estimating H(Γ), the number of such decompositions of Γ. Our main result is that H(Γ) = r (1+o(1))nr/2. In particular, the number of Hamiltonian decompositions of K n is \({n^{\left( {1 + o\left( 1 \right)} \right){n^2}/2}}\).  相似文献   

16.
A graph G is called an (n,k)-graph if κ(G-S)=n-|S| for any S ? V(G) with |S| ≤ k, where ?(G) denotes the connectivity of G. Mader conjectured that for k ≥ 3 the graph K2k+2?(1-factor) is the unique (2k, k)-graph. Kriesell has settled two special cases for k = 3,4. We prove the conjecture for the general case k ≥ 5.  相似文献   

17.
A proper edge coloring of a graph G is said to be acyclic if there is no bicolored cycle in G.The acyclic edge chromatic number of G,denoted byχ′a(G),is the smallest number of colors in an acyclic edge coloring of G.Let G be a planar graph with maximum degree.In this paper,we show thatχ′a(G)+2,if G has no adjacent i-and j-cycles for any i,j∈{3,4,5},which implies a result of Hou,Liu and Wu(2012);andχ′a(G)+3,if G has no adjacent i-and j-cycles for any i,j∈{3,4,6}.  相似文献   

18.
An r-acyclic edge chromatic number of a graph G, denoted by a r r(G), is the minimum number of colors used to produce an edge coloring of the graph such that adjacent edges receive different colors and every cycle C has at least min {|C|, r} colors. We prove that a r r(G) ≤ (4r + 1)Δ(G), when the girth of the graph G equals to max{50, Δ(G)} and 4 ≤ r ≤ 7. If we relax the restriction of the girth to max {220, Δ(G)}, the upper bound of a r r(G) is not larger than (2r + 5)Δ(G) with 4 ≤ r ≤ 10.  相似文献   

19.
The paper considers cubature formulas for calculating integrals of functions f(X), X = (x 1, …, x n ) which are defined on the n-dimensional unit hypercube K n = [0, 1] n and have integrable mixed derivatives of the kind \(\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)\), 0 ≤ α j ≤ 2. We estimate the errors R[f] = \(\smallint _{K^n } \) f(X)dX ? Σ k = 1 N c k f(X(k)) of cubature formulas (c k > 0) as functions of the weights c k of nodes X(k) and properties of integrable functions. The error is estimated in terms of the integrals of the derivatives of f over r-dimensional faces (rn) of the hypercube K n : |R(f)| ≤ \(\sum _{\alpha _j } \) G j )\(\int_{K^r } {\left| {\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)} \right|} \) dX r , where coefficients G j ) are criteria which depend only on parameters c k and X(k). We present an algorithm to calculate these criteria in the two- and n-dimensional cases. Examples are given. A particular case of the criteria is the discrepancy, and the algorithm proposed is a generalization of those used to compute the discrepancy. The results obtained can be used for optimization of cubature formulas as functions of c k and X(k).  相似文献   

20.
A subset F ? V (G) is called an R k -vertex-cut of a graph G if G ? F is disconnected and each vertex of G ? F has at least k neighbors in G ? F. The R k -vertex-connectivity of G, denoted by κ k (G), is the cardinality of a minimum R k -vertex-cut of G. Let B n be the bubble sort graph of dimension n. It is known that κ k (B n ) = 2 k (n ? k ? 1) for n ≥ 2k and k = 1, 2. In this paper, we prove it for k = 3 and conjecture that it is true for all kN. We also prove that the connectivity cannot be more than conjectured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号