首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Let G be a graph and k ≥ 2 a positive integer. Let h: E(G) → [0, 1] be a function. If \(\sum\limits_{e \mathrel\backepsilon x} {h(e) = k} \) holds for each xV (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {eE(G): h(e) > 0}. A graph G is fractional independent-set-deletable k-factor-critical (in short, fractional ID-k-factor-critical), if G ? I has a fractional k-factor for every independent set I of G. In this paper, we prove that if n ≥ 9k ? 14 and for any subset X ? V (G) we have
$${N_G}(X) = V(G)if|X| \geqslant \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ;or|{N_G}(X)| \geqslant \frac{{3k - 1}}{k}|X|if|X| < \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ,$$
then G is fractional ID-k-factor-critical.
  相似文献   

2.
A graph G is vertex pancyclic if for each vertex \({v \in V(G)}\) , and for each integer k with 3 ≤ k ≤ |V(G)|, G has a k-cycle C k such that \({v \in V(C_k)}\) . Let s ≥ 0 be an integer. If the removal of at most s vertices in G results in a vertex pancyclic graph, we say G is an s-vertex pancyclic graph. Let G be a simple connected graph that is not a path, cycle or K 1,3. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K 3}, where a divalent path in G is a path whose interval vertices have degree two in G. The s-vertex pancyclic index of G, written vp s (G), is the least nonnegative integer m such that L m (G) is s-vertex pancyclic. We show that for a given integer s ≥ 0,
$vp_s(G)\le \left\{\begin{array}{l@{\quad}l}\qquad\quad\quad\,\,\,\,\,\,\, l(G)+s+1: \quad {\rm if} \,\, 0 \le s \le 4 \\ l(G)+\lceil {\rm log}_2(s-2) \rceil+4: \quad {\rm if} \,\, s \ge 5 \end{array}\right.$
And we improve the bound for essentially 3-edge-connected graphs. The lower bound and whether the upper bound is sharp are also discussed.
  相似文献   

3.
Let G be a finite group and let Γ(G) be the prime graph of G. Assume p prime. We determine the finite groups G such that Γ(G) = Γ(PSL(2, p 2)) and prove that if p ≠ 2, 3, 7 is a prime then k(Γ(PSL(2, p 2))) = 2. We infer that if G is a finite group satisfying |G| = |PSL(2, p 2)| and Γ(G) = Γ(PSL(2, p 2)) then G ? PSL(2, p 2). This enables us to give new proofs for some theorems; e.g., a conjecture of W. Shi and J. Bi. Some applications are also considered of this result to the problem of recognition of finite groups by element orders.  相似文献   

4.
An edge-coloring of a graph G is an assignment of colors to all the edges of G. A g c -coloring of a graph G is an edge-coloring of G such that each color appears at each vertex at least g(v) times. The maximum integer k such that G has a g c -coloring with k colors is called the g c -chromatic index of G and denoted by \(\chi\prime_{g_{c}}\)(G). In this paper, we extend a result on edge-covering coloring of Zhang and Liu in 2011, and give a new sufficient condition for a simple graph G to satisfy \(\chi\prime_{g_{c}}\)(G) = δ g (G), where \(\delta_{g}\left(G\right) = min_{v\epsilon V (G)}\left\{\lfloor\frac{d\left(v\right)}{g\left(v\right)}\rfloor\right\}\).  相似文献   

5.
Let G be a nonabelian group, and associate the noncommuting graph ?(G) with G as follows: the vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. Let S 4(q) be the projective symplectic simple group, where q is a prime power. We prove that if G is a group with ?(G) ? ?(S 4(q)) then G ? S 4(q).  相似文献   

6.
A connected graph G is said to be a factor-critical graph if G ?v has a perfect matching for every vertex v of G. In this paper, the 2-connected factor-critical graph G which has exactly |E(G)| + 1 maximum matchings is characterized.  相似文献   

7.
The limit probabilities of first-order properties of a random graph in the Erd?s–Rényi model G(n, n?α), α ∈ (0, 1), are studied. For any positive integer k ≥ 4 and any rational number t/s ∈ (0, 1), an interval with right endpoint t/s is found in which the zero-one k-law holds (the zero-one k-law describes the behavior of the probabilities of first-order properties expressed by formulas of quantifier depth at most k).Moreover, it is proved that, for rational numbers t/s with numerator not exceeding 2, the logarithm of the length of this interval is of the same order of smallness (as n→∞) as that of the length of the maximal interval with right endpoint t/s in which the zero-one k-law holds.  相似文献   

8.
Let (F k,n ) n and (L k,n )n be the k-Fibonacci and k-Lucas sequence, respectively, which satisfies the same recursive relation a n+1 = ka n + a n?1 with initial values F k,0 = 0, F k,1 = 1, L k,0 = 2 and L k,1 = k. In this paper, we characterize the p-adic orders ν p (F k,n ) and ν p (L k,n ) for all primes p and all positive integers k.  相似文献   

9.
An interval k-graph is the intersection graph of a family of intervals of the real line partitioned into k classes with vertices adjacent if and only if their corresponding intervals intersect and belong to different classes. In this paper we study the cocomparability interval k-graphs; that is, the interval k-graphs whose complements have a transitive orientation and are therefore the incomparability graphs of strict partial orders. For brevity we call these orders interval k-orders. We characterize the kind of interval representations a cocomparability interval k-graph must have, and identify the structure that guarantees an order is an interval k-order. The case k =?2 is peculiar: cocomparability interval 2-graphs (equivalently proper- or unit-interval bigraphs, bipartite permutation graphs, and complements of proper circular-arc graphs to name a few) have been characterized in many ways, but we show that analogous characterizations do not hold if k >?2. We characterize the cocomparability interval 3-graphs via one forbidden subgraph and hence interval 3-orders via one forbidden suborder.  相似文献   

10.
Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p and p′ are joined by an edge if there is an element in G of order pp′. We denote by k(Γ(G)) the number of isomorphism classes of finite groups H satisfying Γ(G) = Γ(H). Given a natural number r, a finite group G is called r-recognizable by prime graph if k(Γ(G)) =  r. In Shen et al. (Sib. Math. J. 51(2):244–254, 2010), it is proved that if p is an odd prime, then B p (3) is recognizable by element orders. In this paper as the main result, we show that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then \({G\cong B_p(3)}\) or C p (3). Also if Γ(G) = Γ(B 3(3)), then \({G\cong B_3(3), C_3(3), D_4(3)}\), or \({G/O_2(G)\cong {\rm Aut}(^2B_2(8))}\). As a corollary, the main result of the above paper is obtained.  相似文献   

11.
Let G be a simple graph, let d(v) denote the degree of a vertex v and let g be a nonnegative integer function on V (G) with 0 ≤ g(v) ≤ d(v) for each vertex vV (G). A g c -coloring of G is an edge coloring such that for each vertex vV (G) and each color c, there are at least g(v) edges colored c incident with v. The g c -chromatic index of G, denoted by χ′g c (G), is the maximum number of colors such that a gc-coloring of G exists. Any simple graph G has the g c -chromatic index equal to δ g (G) or δ g (G) ? 1, where \({\delta _g}\left( G \right) = \mathop {\min }\limits_{v \in V\left( G \right)} \left\lfloor {d\left( v \right)/g\left( v \right)} \right\rfloor \). A graph G is nearly bipartite, if G is not bipartite, but there is a vertex uV (G) such that G ? u is a bipartite graph. We give some new sufficient conditions for a nearly bipartite graph G to have χ′g c (G) = δ g (G). Our results generalize some previous results due to Wang et al. in 2006 and Li and Liu in 2011.  相似文献   

12.
The (r, d)-relaxed edge-coloring game is a two-player game using r colors played on the edge set of a graph G. We consider this game on forests and more generally, on k-degenerate graphs. If F is a forest with Δ(F)=Δ, then the first player, Alice, has a winning strategy for this game with r=Δ?j and d≥2j+2 for 0≤j≤Δ?1. This both improves and generalizes the result for trees in Dunn, C. (Discret. Math. 307, 1767–1775, 2007). More broadly, we generalize the main result in Dunn, C. (Discret. Math. 307, 1767–1775, 2007) by showing that if G is k-degenerate with Δ(G)=Δ and j∈[Δ+k?1], then there exists a function h(k,j) such that Alice has a winning strategy for this game with r=Δ+k?j and dh(k,j).  相似文献   

13.
An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that |c(N(v))| ≥ min {r, deg(v)}, for each vV (G). The r-dynamic chromatic number of a graph G is the smallest k such that G admits an r-dynamic coloring with k colors. In this paper, we obtain the r-dynamic chromatic number of the line graph of helm graphs Hn for all r between minimum and maximum degree of Hn. Moreover, our proofs are constructive, what means that we give also polynomial time algorithms for the appropriate coloring. Finally, as the first, we define an equivalent model for edge coloring.  相似文献   

14.
An (a, d)-edge-antimagic total labeling of a graph G is a bijection f from V(G) ∪ E(G) onto {1, 2,…,|V(G)| + |E(G)|} with the property that the edge-weight set {f(x) + f(xy) + f(y) | xyE(G)} is equal to {a, a + d, a + 2d,...,a + (|E(G)| ? 1)d} for two integers a > 0 and d ? 0. An (a, d)-edge-antimagic total labeling is called super if the smallest possible labels appear on the vertices. In this paper, we completely settle the problem of the super (a, d)-edge-antimagic total labeling of the complete bipartite graph Km,n and obtain the following results: the graph Km,n has a super (a, d)-edge-antimagic total labeling if and only if either (i) m = 1, n = 1, and d ? 0, or (ii) m = 1, n ? 2 (or n = 1 and m ? 2), and d ∈ {0, 1, 2}, or (iii) m = 1, n = 2 (or n = 1 and m = 2), and d = 3, or (iv) m, n ? 2, and d = 1.  相似文献   

15.
Call a sequence of k Boolean variables or their negations a k-tuple. For a set V of n Boolean variables, let T k (V) denote the set of all 2 k n k possible k-tuples on V. Randomly generate a set C of k-tuples by including every k-tuple in T k (V) independently with probability p, and let Q be a given set of q “bad” tuple assignments. An instance I = (C,Q) is called satisfiable if there exists an assignment that does not set any of the k-tuples in C to a bad tuple assignment in Q. Suppose that θ, q > 0 are fixed and ε = ε(n) > 0 be such that εlnn/lnlnn→∞. Let k ≥ (1 + θ) log2 n and let \({p_0} = \frac{{\ln 2}}{{q{n^{k - 1}}}}\). We prove that
$$\mathop {\lim }\limits_{n \to \infty } P\left[ {I is satisfiable} \right] = \left\{ {\begin{array}{*{20}c} {1,} & {p \leqslant (1 - \varepsilon )p_0 ,} \\ {0,} & {p \geqslant (1 + \varepsilon )p_0 .} \\ \end{array} } \right.$$
  相似文献   

16.
A k-total coloring of a graph G is a mapping ?: V (G) ? E(G) → {1; 2,..., k} such that no two adjacent or incident elements in V (G) ? E(G) receive the same color. Let f(v) denote the sum of the color on the vertex v and the colors on all edges incident with v: We say that ? is a k-neighbor sum distinguishing total coloring of G if f(u) 6 ≠ f(v) for each edge uvE(G): Denote χ Σ (G) the smallest value k in such a coloring of G: Pil?niak and Wo?niak conjectured that for any simple graph with maximum degree Δ(G), χ Σ ≤ Δ(G)+3. In this paper, by using the famous Combinatorial Nullstellensatz, we prove that for K 4-minor free graph G with Δ(G) > 5; χ Σ = Δ(G) + 1 if G contains no two adjacent Δ-vertices, otherwise, χ Σ (G) = Δ(G) + 2.  相似文献   

17.
Let K be an algebraic extension of a field k, let σ = (σ ij ) be an irreducible full (elementary) net of order n ≥ 2 (respectively, n ≥ 3) over K, while the additive subgroups σ ij are k-subspaces of K. We prove that all σij coincide with an intermediate subfield P, k ? P ? K, up to conjugation by a diagonal matrix.  相似文献   

18.
The purpose of this paper is to investigate central elements in distribution algebras D i s t(G) of general linear supergroups G = G L(m|n). As an application, we compute explicitly the center of D i s t(G L(1|1)) and its image under Harish-Chandra homomorphism.  相似文献   

19.
Let G be a connected graph with vertex set V(G) = {v1, v2,..., v n }. The distance matrix D(G) = (d ij )n×n is the matrix indexed by the vertices of G, where d ij denotes the distance between the vertices v i and v j . Suppose that λ1(D) ≥ λ2(D) ≥... ≥ λ n (D) are the distance spectrum of G. The graph G is said to be determined by its D-spectrum if with respect to the distance matrix D(G), any graph having the same spectrum as G is isomorphic to G. We give the distance characteristic polynomial of some graphs with small diameter, and also prove that these graphs are determined by their D-spectra.  相似文献   

20.
Amply regular with parameters (v, k, λ, μ) we call an undirected graph with v vertices in which the degrees of all vertices are equal to k, every edge belongs to λ triangles, and the intersection of the neighborhoods of every pair of vertices at distance 2 contains exactly μ vertices. An amply regular diameter 2 graph is called strongly regular. We prove the nonexistence of amply regular locally GQ(4,t)-graphs with (t,μ) = (4, 10) and (8, 30). This reduces the classification problem for strongly regular locally GQ(4,t)-graphs to studying locally GQ(4, 6)-graphs with parameters (726, 125, 28, 20).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号