首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Chalcogenide II-VI nanoclusters are usually prepared as isolated clusters and have defied numerous efforts to join them into covalent open-framework architecture with conventional templating methods such as protonated amines or inorganic cations commonly used to direct the formation of porous frameworks. Herein, we report the first templated synthesis of II-VI covalent superlattices from large II-VI tetrahedral clusters (i.e., [Cd32S14(SPh)38]2-). Our method takes advantage of low charge density of metal-chelate dyes that is a unique match with three-dimensional II-VI semiconductor frameworks in charge density, surface hydrophilicity-hydrophobicity, and spatial organization. In addition, metal-chelate dyes also serve to tune the optical properties of resulting dye semiconductor composite materials.  相似文献   

2.
Electrospray mass spectrometry of   总被引:1,自引:0,他引:1  
There has been a substantial growth in the application of mass spectrometry (MS) methods for the analysis of inorganic materials, due to the inherent sensitivity of mass spectrometry ionization to the specific composition and structure of the analyzed materials. To date, few mass spectrometry studies have focused on metal-chalcogenide materials, an important class of semiconductor materials at the nanoscale, that exhibit interesting optical and electronic properties as a function of size. In this study, we report the application of a correlated electrospray mass spectrometry (ESMS) study between negative-ion and positive-ion mode under low-cone voltage to probe size, composition, and stability of metal-chalcogenide materials at the <1 nm scale. This correlation approach provides insight into the ionization behavior and thermodynamic stability of clusters in the <1.0 nm size domain of the form [Zn4(SPh)10][Me4N]2, [Cd4(SPh)10][Me4N]2, [E4Zn10(SPh)16][Me4N]4, [E4Cd10(SPh)16][Me4N]4 (E = S, Se). It is demonstrated that application of low-cone voltage ESMS can be a useful technique for the rapid analysis of intact solid state nanomaterials when both negative and positive ionic modes are analyzed, with a potential for extrapolation to other classes of nanoscale materials.  相似文献   

3.
Du ZY  Xu HB  Mao JG 《Inorganic chemistry》2006,45(16):6424-6430
Hydrothermal reactions of zinc(II) carbonate with m-sulfophenylphosphonic acid (m-HO3S-Ph-PO3H2) and 1,10-phenanthroline (phen) or 4,4'-bipyridine (bipy) lead to three novel zinc(II) sulfonate-phosphonates, namely, [Zn(phen)3]2[Zn4(m-O3S-Ph-PO3)4(phen)4].20H2O (1), [Zn6(m-O3S-Ph-PO3)4(phen)8].11H2O (2), and [Zn6(m-O3S-Ph-PO3)4(bipy)6(H2O)4].18H2O (3). Compound 1 contains a tetranuclear zinc(II) cluster anion in which four Zn(II) ions are bridged by two tetradentate and two bidentate phosphonate groups, and the four negative charges of the cluster are compensated by two [Zn(phen)3]2+ cations. Compound 2 features a hexanuclear zinc(II) cluster in which the same tetranuclear cluster of 1 is bridged with two additional Zn(II) ions. The structure of 3 features a porous 3D network based on hexanuclear zinc(II) units of [Zn6(m-O3S-Ph-PO3)4] interconnected by 4,4'-bipy ligands. The hexanuclear cluster in 3 is different from that in 2 in that all four phosphonate groups in 3 are tridentate bridging. Compounds 1, 2, and 3 exhibit broad blue fluorescent emission bands at 378, 409, and 381 nm, respectively.  相似文献   

4.
We report the combination of measurement and prediction of X-ray absorption fine structure (XAFS) data, where the term XAFS refers to the overall spectrum that encompasses both the X-ray Absorption Near Edge Structure (XANES) region as well as the Extended X-ray Absorption Fine Structure (EXAFS) region, to evaluate the cadmium thiolate cluster structures in the metalloprotein metallothionein. XAFS spectra were simulated using coordinates from molecular models of the protein calculated by molecular mechanics/molecular dynamics (MM3/MD), from NMR analyses, and from analysis of X-ray diffraction data. XAFS spectra were also simulated using the coordinates from X-ray crystallographic data for [Cd(SPh)4]2-, CdS, [Cd2(mu-SPh)2(SPh)4]2-, and [Cd4(mu-SPh)6(SPh)4]2-. The simulated XAFS data that were calculated using the FEFF8 program closely resemble the experimental data reported for [Cd(SPh)4]2-, CdS, [Cd2(mu-SPh)2(SPh)4]2-, [Cd4(mu-SPh)6(SPh)4]2-, rabbit liver metallothionein cadmium alpha-domain (Cd4-alpha MT), and cadmium rabbit liver betaalpha metallothionein (Cd7-betaalpha MT). MM3 force field parameters were modified to include cadmium-sulfur bonding and were initially set to values derived from published X-ray diffraction and EXAFS experimental data. The force field was further calibrated and adjusted through comparison between experimental spectra taken from the literature and simulated XAFS spectra calculated using the FEFF8 program in combination with atomic coordinates from MM3/MD energy minimization. MM3/MD techniques were used with the calibrated force field to predict the high-resolution structure of the metal clusters in rabbit liver Cd7-MT. Structures for Cd3S9 (beta) MT and Cd4S11 (alpha) MT domains from MM3/MD calculations and those previously reported for Cd7-MT on the basis of 1H and 113Cd NMR data were compared. Structural differences between the different models for these cadmium thiolate clusters were evident. Combining the measurement and simulation of XAFS data provides an excellent method of assessing, modeling, and predicting metal-binding sites in metalloproteins when X-ray absorption spectroscopy (XAS) data are available.  相似文献   

5.
The ternary molecular nanoclusters [Zn(x)Cd(10-x)Se4(SePh)12(PnPr3)4] (x = 1.8, 1 a; x = 2.6, 1 b) were employed as single-source precursors for the synthesis of high-quality hexagonal Zn(x)Cd(1-x)Se nanocrystals. The tellurium clusters [Zn(x)Cd(10-x)Te4(TePh)12(PnPr3)4] (x = 1.8, 2 a; x = 2.6, 2 b) are equally convenient precursors for the synthesis cubic Zn(x)Cd(1-x)E nanoparticles. The thermolysis of the cluster molecules in hexadecylamine provides an efficient system in which the inherent metal-ion stoichiometry of the clusters is retained in the nanocrystalline products, whilst also affording control of particle size within the 2-5 nm range. In all cases, the nanoparticles are monodisperse, and luminescence spectra exhibit emission energies close to the absorption edge. Analysis of the optical spectra and X-ray diffraction patterns of these materials indicates a metal-ion concentration gradient within the structures of the nanocrystals, with Zn(II) ions predominantly located near the surface of the particles.  相似文献   

6.
以[Me4N]2[M4(SPh)10]和[Me4N]4[S4M10(SPh)16](M=Cd,Zn)为前驱体,采用簇合物裂解法合成了配合物(Bu4N)2[Cd(mnt)2]、(Bu4N)2[M(dmit)2](M=Cd,Zn)以及双核配合物(Me4N)2[Zn2(Sph)2·(S2TTF(SCH2)2)2].运用PM3计算方法得到了各种二硫纶盐配体中硫负离子的静电荷大小关系:mnt2->SPh->dmit2->[(MeS)2TTFS2]2-≈[(CH2S)2TTFS2]2-.在理论计算及实验结果的基础上,探讨了配体上硫负离子的静电荷大小与反应产物间的关系.  相似文献   

7.
A series of water-soluble cadmium sulfide clusters bearing an alkyl-chain layer between the inorganic core and the outer PEG layer were synthesized by the ligand-exchange reaction of Cd(10)S(4)(SPh)(12) with thiols functionalized by an N-(ω-PEGylated alkyl) amide moiety. The photoluminescence titration experiments in aqueous media revealed that clusters with a sufficiently hydrophobic inner environment exhibit definite emission enhancements upon the addition of bisphenol A or 4-nonylphenol. The dramatic effect of the alkyl chain length on the emission responses demonstrated that the hydrophobic layer around the inorganic surface serves as guest binding sites to facilitate the access of the lipophilic phenols near the organic-inorganic interface. A marked preference for the lipophilic phenols over related compounds, such as methylated bisphenol A, long-chain n-alkanol, and nonlipophilic phenols, was observed in the emission responses of the "hydrophobic" cluster, suggesting that not only the hydrophobic interaction but also the attractive force involving the phenolic OH group contributes to the positive responses. The results of control experiments and IR studies indicated that the hydrogen bonding interaction between the phenolic OH group and the amide group in the surface organic units is responsible for the positive emission responses. The present work shows that the precise tuning of the molecular recognition environments near the organic-inorganic interface is useful for developing guest-specific functions.  相似文献   

8.
The kinetics of the reactions between [Zn4(SPh)10](2-) and an excess of MX2 (M = Co, X = NO3 or Cl; M = Fe, X = Cl), in which a Zn(II) is replaced by M(II), have been studied in MeCN at 25.0 degrees C. (1)H NMR spectroscopy shows that the ultimate product of the reactions is an equilibrium mixture of clusters of composition [Zn(n)M(4-n)(SPh)10](2-), and this is reflected in the multiphasic absorbance-time curves observed over protracted times (several minutes) using stopped-flow spectrophotometry to study the reactions. The kinetics of only the first phase have been determined, corresponding to the equilibrium formation of [Zn3M(SPh)10](2-). The effects of varying the concentrations of cluster, MX2, and ZnCl2 on the kinetics have been investigated. The rate law is consistent with the equilibrium nature of the metal exchange process and indicates a mechanism for the formation of [Zn3M(SPh)10](2-) involving two coupled equilibria. In the initial step binding of MX2 to a bridging thiolate in [Zn4(SPh)10](2-) results in breaking of a Zn-bridging thiolate bond. In the second step replacement of the cluster Zn involves transfer of the bridging thiolates from the Zn to M, with breaking of a Zn-bridged thiolate bond being rate-limiting. The kinetics for the reaction of ZnCl2 with [Zn3M(SPh)10](2-) (M = Fe or Co)} depends on the identity of M. This behavior indicates attack of ZnCl2 at a M-mu-SPh-Zn bridged thiolate. Similar studies on the analogous reactions between [Fe4(SPh)10](2-) and an excess of CoX2 (X = NO3 or Cl) in MeCN exhibit simpler kinetics but these are also consistent with the same mechanism.  相似文献   

9.
Three anion-cation compounds 1-3 with formula [M(phen)(3)][Cd(4)(SPh)(10)]·Sol (M = Ru(2+), Fe(2+), and Ni(2+), Sol = MeCN and H(2)O) have been synthesized and characterized by single-crystal analysis. Both the cations and anion are well-known ions, but the properties of the co-assembled compounds are interesting. Molecular structures and charge-transfer between the cations and anions in crystal and even in solution are discussed. These compounds are isomorphous and short inter-ion interactions are found in these crystals, such as π···π stacking and C-H···π contacts. Both spectroscopic and theoretical calculated results indicate that there is anion-cation charge-transfer (ACCT) between the Ru-phen complex dye and the Cd-SPh cluster, which plays an important role in their photophysical properties. The intensity of the fluorescent emission of the [Ru(phen)(3)](2+) is enhanced when the cation interacts with the [Cd(4)(SPh)(10)](2-) anion. The mechanism for the enhancement of photoluminescence has been proposed.  相似文献   

10.
Three new Zn(Ⅱ)/Cd(Ⅱ) coordination polymers based on 2-mercaptonicotinic acid (H2mna) with 1,2-di(4-pyridyl)ethylene (dpe) introduced as a bridging ligand have been synthesized via hydrothermal method and structurally characterized by single-crystal X-ray diffraction as well as elemental analysis and IR. As reported in this paper, [Zn2(dpe)0.5(mna)2] (1) can be classified as a two-dimensional layer structure in which the 1D chain composed of Zn(Ⅱ) and mna ligands is bridged by dpe ligands, while the complex named [Zn4(dpe)4(mna)4] (2) is a tetra-nuclear cluster compound. These two compounds are further extended to three-dimensional structures by hydrogen bonds along with C-H…π and π…π interactions. Compound 3 with general formular [Cd2(dpe)0.5(mna)2]·H2O belongs to a three-dimensional porous structure in which the 2D metal layers formed by the coordination of Cd(Ⅱ) and mna ligands are connected with the bridging of dpe ligands.  相似文献   

11.
Cheng JW  Zheng ST  Yang GY 《Inorganic chemistry》2008,47(11):4930-4935
Three novel 3D pillared-layer heterometallic lanthanide-transition-metal (hetero-Ln-TM) compounds, namely, Ln2Cu7I6(ina)7(H2O)6.H2O [ina=isonicotinic acid; Ln=Ce (1), Sm (2)] and Er4(OH)4Cu5I4(ina)6(na)(2,5-pdc).0.3H2O (3; na=nicotinic acid, 2,5-pdc=2,5-pyridinedicarboxylic acid), have been obtained by incorporating different metal clusters as building blocks under hydrothermal conditions. Compounds 1 and 2 are isostructural and consist of two distinct building units of dimeric [Ln2(ina)6] cores and inorganic 2D [Cu8I7]nn+ layers based on the [Cu3I3] and [Cu4I3]+ clusters. Compound 3 is constructed from decanuclear [Cu10I8]2+ clusters and inorganic 1D [Er4(OH)4]n8n+ cluster chain-based layers, which represent the first example of a 3D hetero-Ln-TM constructed by the combination of two distinct types of metal cluster units of a 1D [Er4(OH)4]n8n+ cluster polymer and a transition-metal cluster. It is interesting that decarboxylation occurred in the ortho position and 2,5-pdc2- was partially transformed into na- under hydrothermal conditions. Compounds 1-3 represent good examples of using different metal cluster units to construct fascinating 3D hetero-Ln-TM frameworks.  相似文献   

12.
The reaction of [(3,5-Me(2)-C(5)H(3)N)(2)Zn(ESiMe(3))(2)] (E = Se, Te) with cadmium(II) acetate in the presence of PhESiMe(3) and P(n)Pr(3) at low temperature leads to the formation of single crystals of the ternary nanoclusters [Zn(x)()Cd(10)(-)(x)()E(4)-(EPh)(12)(P(n)()Pr(3))(4)] [E = Se, x = 1.8 (2a), 2.6 (2b); Te, x = 1.8 (3a), 2.6 (3b)] in good yield. The clusters [Zn(3)Hg(7)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (4) and [Cd(3.7)Hg(6.3)Se(4)(SePh)(12)(P(n)()Pr(3))(4)] (5) can be accessed by similar reactions involving [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SeSiMe(3))(2)] or [(N,N'-tmeda)Cd(SeSiMe(3))(2)] (1) and mercury(II) chloride. The metal silylchalcogenolate reagents are efficient delivery sources of {ME(2)} in cluster synthesis, and thus, the metal ion content of these clusters can be readily moderated by controlling the reaction stoichiometry. The reaction of cadmium acetate with [(3,5-Me(2)-C(5)H(3)N)(2)Zn(SSiMe(3))(2)], PhSSiMe(3), and P(n)()Pr(3) affords the larger nanocluster [Zn(2.3)Cd(14.7)S(4)(SPh)(26)(P(n)()Pr(3))(2)] (6). The incorporation of Zn(II) into {Cd(10)E} (E = Se, Te) and Zn(II) or Cd(II) into {Hg(10)Se} nanoclusters results in a significant blue shift in the energy of the first "excitonic" transition. Solid-state thermolysis of complexes 2 and 3 reveals that these clusters can be used as single-source precursors to bulk ternary Zn(x)Cd(1)(-)(x)E materials as well as larger intermediate clusters and that the metal ion ratio is retained during these reactions.  相似文献   

13.
Novel binuclear dithiolate complexes (Me4N)2[M2-(SPh)2(S2TTF(SMe)2)2] (M = Cd and Zn) have been synthesized by a new cluster-cracking method.  相似文献   

14.
Terminal thiolate ligands on the synthetic Fe-S-based clusters [Fe4S4(SR)4]2- (R = Et or SPh) or [{MoFe3S4(SPh)3}2(mu-SPh)3]3- are replaced by chloride in a reaction with PhCOCl to produce [Fe4S4Cl4]2- and [{MoFe3S4Cl3}2(mu-SPh)3]3-, respectively. Kinetic studies using stopped-flow spectrophotometry show that, in general, the mechanisms of these reactions in MeCN occur by two pathways. One pathway is independent of the concentration of PhCOCl and involves rate-limiting dissociation of the thiolate ligand. The free thiolate subsequently reacts with PhCOCl to produce PhCOSR and the Cl- which binds to the vacant site on the cluster. The second pathway exhibits a nonlinear dependence on the concentration of PhCOCl and involves initial, rapid binding of PhCOCl to the cluster followed by intramolecular thiolate ligand attack on the coordinated acid chloride. The intermediate in which PhCOCl is bound to the cluster has been detected spectrophotometrically. The ways in which the rates of the reactions between PhCOCl and Fe-S-based clusters are affected by changes of the terminal thiolate, the metal composition of the cluster core, and the protonation state of the cluster have been investigated and are compared with the effect these same changes have on the rates of nucleophilic substitution.  相似文献   

15.
Chen P  Li J  Duan F  Yu J  Xu R  Sharma RP 《Inorganic chemistry》2007,46(16):6683-6687
Three new chloride-rich zincophosphates including two zero-dimensional (0D) clusters [dl-Co(en)3]2[Zn4(H2PO4)2(HPO4)2Cl8] (denoted ZnPO-CJ33) and [d-Co(en)3]2[Zn4(H2PO4)2(HPO4)2Cl8] (denoted ZnPO-CJ34), and one-dimensional (1D) zincophosphate chain [dl-Co(en)3][Zn2(H2PO4)(HPO4)2Cl2] (denoted ZnPO-CJ35) have been solvothermally prepared. ZnPO-CJ33 and ZnPO-CJ34 possess the same cluster structure as the macroanionic [Zn4H6P4O16Cl8]6- unit formed by alternation of ZnOCl3/ZnO3Cl and HPO4/H2PO4 tetrahedra but differ in the countercations. The racemic [dl-Co(en)3]3+ cations are located among the clusters of ZnPO-CJ33, whereas chiral [d-Co(en)3]3+ cations are located among the clusters of ZnPO-CJ34. ZnPO-CJ34 templated by the optically pure chiral [d-Co(en)3]3+ cations is the first chiral monomeric zincophosphate. ZnPO-CJ35 templated by the racemic [dl-Co(en)3]3+ cations possesses a 1D infinite chain structure formed by the alternation of ZnO3Cl and HPO4/H2PO4 tetrahedra. The 1D chain structure of ZnPO-CJ35 can also be viewed as generated from the condensation of 0D clusters of ZnPO-CJ33, with the terminal Cl ions replaced by HPO4 groups. Experimentally, the structural transformation from ZnPO-CJ33 to ZnPO-CJ35 has been investigated.  相似文献   

16.
The synthesis and characterisation of a new bis([9]aneN3) ligand (L4) containing two [9]aneN3 macrocyclic moieties separated by a 2,6-dimethylenepyridine unit is reported. A potentiometric and 1H NMR study in aqueous solution reveals that ligand protonation occurs on the secondary amine groups and does not involve the pyridine nitrogen. The coordination properties toward Cu(II), Zn(II), Cd(II) and Pb(II) were studied by means of potentiometric and UV spectrophotometric measurements. The ligand can form mono- and binuclear complexes in aqueous solution. In the 1 : 1 complexes, the metal is sandwiched between the two [9]aneN3 moieties and the pyridine N-donor is coordinated to the metal, as actually shown by the crystal structure of the compound [ZnL4](NO3)2.CH3NO2. L4 shows a higher binding ability for Cd(II) with respect to Zn(II), probably due to a better fitting of Cd(II) ion inside the cavity generated by the two facing [9]aneN3 units. The formation of binuclear complexes is accompanied by the assembly of OH-bridged M2(OH)x (x = 1-3) clusters inside the cavity defined by the two facing [9]aneN3 units, and pyridine is not involved in metal coordination. A potentiometric and (1)H NMR study on the coordination of halogenide anions by L4 and its structural analogous L3 in which the two [9]aneN3 units are separated by a shorter quinoxaline linkage, shows that bromide is selectively recognised by L4, while chloride is selectively bound by L3. Such a behaviour is discussed in terms of dimensional matching between the spherical anions and the cavities generated by the two [9]aneN3 units of the receptors.  相似文献   

17.
Ion mobility measurements, combined with molecular mechanics simulations, are used to study enantiopure and racemic proline clusters formed by electrospray ionization. Broad distributions of cluster sizes and charge states are observed, ranging from clusters containing only a few proline units to clusters that contain more than 100 proline units (i.e., protonated clusters of the form [xPro + nH](n+) with x = 1 to >100 and n = 1-7). As the sizes of clusters increase, there is direct evidence for nanometer scale, chirally induced organization into specific structures. For n = 4 and 5, enantiopure clusters of approximately 50 to 100 prolines assemble into structures that are more elongated than the most compact structure that is observed from the racemic proline clusters. A molecular analogue, cis-4-hydroxy-proline, displays significantly different behavior, indicating that in addition to the rigidity of the side chain ring, intermolecular interactions are important in the formation of chirally directed clusters. This is the first case in which assemblies of chirally selective elongated structures are observed in this size range of amino acid clusters. Relationships between enantiopurity, cluster shape, and overall energetics are discussed.  相似文献   

18.
Nitric oxide is an important molecule in biology and modulates a variety of physiological and pathophysiological processes. Some of its regulatory functions are exerted through interactions with redox-active elements, including iron, nickel, cobalt, and sulfur. Metalloenzymes containing [ nFe- nS] ( n = 2 or 4) clusters can be activated or inactivated by reaction with NO, affording dinitrosyl iron complexes. Studies of the NO chemistry of small-molecule iron thiolate complexes have provided insight into these biological processes and suggested probable intermediates. To explore this chemistry from a different perspective, we prepared nickel and cobalt thiolate complexes and investigated their reactions with NO and related compounds. We report here the first examples of anionic complexes containing {Ni(NO)} (10) and {Co(NO) 2} (10) units, the reactivity of which suggests possible intermediates in the interconversion of iron thiolate nitrosyl compounds. Our results demonstrate new chemistry involving NO and simple complexes of nickel and cobalt supported by thiolates, which have been known for more than 30 years. The use of mass balance methodology was key to their discovery. Among the novel complexes reported are (Et 4N) 2[Ni(NO)(SPh) 3] ( 2), from (Et 4N) 2[Ni(SPh) 4] ( 1) and NO, (Et 4N) 2[Ni 2(NO) 2(mu-SPh) 2(SPh) 2] ( 3), from 1 and NO (+) or 2 and Me 3O (+), (Et 4N)[Co(NO) 2(SPh) 2] ( 5), from (Et 4N) 2[Co(SPh) 4] ( 4) and NO, and [Co 3(NO) 6(mu-SPh) 3] ( 6), from 5 and Me 3O (+). In the syntheses of 2 and 5, NO could be replaced by the convenient solid Ph 3CSNO.  相似文献   

19.
The interaction of nitric oxide (NO) with iron-sulfur cluster proteins results in degradation and breakdown of the cluster to generate dinitrosyl iron complexes (DNICs). In some cases the formation of DNICs from such cluster systems can lead to activation of a regulatory pathway or the loss of enzyme activity. In order to understand the basic chemistry underlying these processes, we have investigated the reactions of NO with synthetic [2Fe-2S] and [4Fe-4S] clusters. Reaction of excess NO(g) with solutions of [Fe2S2(SR)4](2-) (R = Ph, p-tolyl (4-MeC6H4), or 1/2 (CH2)2-o-C6H4) cleanly affords the respective DNIC, [Fe(NO)2(SR)2](-), with concomitant reductive elimination of the bridging sulfide ligands as elemental sulfur. The structure of (Et4N)[Fe(NO)2(S-p-tolyl)2] was verified by X-ray crystallography. Reactions of the [4Fe-4S] clusters, [Fe4S4(SR)4](2-) (R = Ph, CH2Ph, (t)Bu, or 1/2 (CH2)-m-C6H4) proceed in the absence of added thiolate to yield Roussin's black salt, [Fe4S3(NO)7](-). In contrast, (Et4N)2[Fe4S4(SPh)4] reacts with NO(g) in the presence of 4 equiv of (Et4N)(SPh) to yield the expected DNIC. For all reactions, we could reproduce the chemistry effected by NO(g) with the use of trityl-S-nitrosothiol (Ph3CSNO) as the nitric oxide source. These results demonstrate possible pathways for the reaction of iron-sulfur clusters with nitric oxide in biological systems and highlight the importance of thiolate-to-iron ratios in stabilizing DNICs.  相似文献   

20.
A new coluster-cracking method to synthesize dithiolate metal complexes was reported and four unsymmetric complexes with formula(Me4N)2[M(Ln)(SPh)2](M=Cd and Zn,L1=dmit=1,3-dithiole-2-thione4-5,dithiolate,L2=dmid=1,3-dithiole-2-one-4,5-dithiolate,SPh=thiophenolate)(1-4)were characterized by elemental analysis,IR,UV NMR spectra and so on.The advantages of this method are summarized in two aspects:(1) the preparation is very convenient;(2) the reaction usually completed giving the product with high pruity.The crystal structure of 1 showed that the bond distances of Cd(Ⅱ)to the sulfur of the thiophenolate group are shorter than those of Cd(Ⅱ)to the sulfur of dmit,so that the thiophenolate group does not be replaced in the reaction and thmixed ligand complexes are the dominant produxts.The dmit complexes showed well third-order NLO properties,but not of the dmid complexes,although dmid is an analogue to dmit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号