首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray photoelectron spectra of the valence band of CdIn2S4 and In2S3 single crystals have been measured. The spectrum of CdIn2S4 has a strong resemblance to its synthesized spectrum from the In2S3 and CdS spectra, which is in good agreement with the theoretical density of states (DOS). The contribution of constituent atoms to the valence band DOS in CdIn2S4 is corresponding to those in In2S3 and CdS.  相似文献   

2.
The shape of the x-ray K absorption spectrum of sulfur in the normal spinel CdIn2S4 is calculated using the FEFF7 program. Local densities of free electron states of S, Cd, and In are calculated in the theory of multiple scattering in the local coherent potential approximation. A comparison of the obtained results with the experimental x-ray SK spectrum demonstrates good agreement between them.  相似文献   

3.
The band structure and spectra of the total and projected densities of states of a new crystal of the chalcopyrite family, namely, CuBS2, have been calculated in terms of the density functional theory. It has been found that the crystal is a pseudo-direct-band-gap semiconductor, and the best theoretical estimate of the optical band gap is 3.44 eV. The upper valence band of the CuBS2 crystal basically consists of the contributions from the p states of S atoms and the d states of Cu atoms. The crystal splitting is 0.2 eV. The bottom of the conduction band is basically formed by the sp states of boron and sulfur atoms with an admixture of the s states of copper atoms.  相似文献   

4.
The photoelectron valence band spectra of TiS2, TiSe2, and TiTe2 dichalcogenides are investigated in the Ti 2p-3d resonance regime. Resonance bands in the vicinity of the Fermi energy are found for TiS2 and TiTe2. The nature of these bands is analyzed based on model calculations of the density of electronic states in TiS2, TiSe2, and TiTe2 compounds intercalated by titanium atoms. Analysis of experimental data and their comparison with model calculations showed that these bands have different origins. It is found that the resonance enhancement of an additional band observed in TiS2 is explained by self-intercalation by titanium during the synthesis of this compound. The resonance enhancement in TiTe2 is caused by occupation of the 3d band in Ti.  相似文献   

5.
The valence band states of the spinel semiconductor CdIn2S4 have been studied by UV photoemission spectroscopy. Contrary to what structural considerations would suggest the measured spectra closely resemble those of defect-zincblend CdIn2Se4 and of other II–III2–VI4 compounds. The likelihood of structural effects in the electronic states of this family is discussed in light of the above results.  相似文献   

6.
X-ray O Kα, Rh Mγ and a series of M Lα emission spectra, ESCA spectra of the valence and inner levels, and O K and Rh MIII quantum-yield spectra for X-ray photoemission of the rhodium double oxides MRhO2 (M = Li, Na, K), MRh2 O4 (M = Be, Mg, Ca, Sr, Ba, Co, Ni, Cu, Zn, Cd, Pb), RhMO4 (M = V, Nb, Ta) and Rh2MO6 (M = Mo, W) have been measured and the dependence of electronic structure on the metal M analysed. For all compounds the inner part of the valence band corresponds to O 2pσ + O 2pπ + Rh 4d states, while the outer part corresponds to Rh 4d. The valence band is separated from the conduction band by a narrow gap of width less than 1 eV. The first empty band, near the bottom of the conduction band, is formed by Rh 4d states, followed by a band due to vacant O 2p states.  相似文献   

7.
8.
The experimentally observed x-ray absorption spectrum of oxygen in UO2 is analyzed theoretically. The experimental absorption spectrum of oxygen is shown to agree well with details of the density of free p states of oxygen in the conduction band. It is found that a minimum cluster of atoms surrounding an absorbing oxygen ion required to reproduce all the details of the fine structure of the density of states at the bottom of the conduction band is of the order of 40 atoms. An analysis of the densities of the electronic states reveals the existence of hybridization of free p states of oxygen with s states of uranium in the conduction band of UO2, as well as the exclusion of p states of oxygen by d states of uranium beyond the confines of the energy interval where they are localized. Fiz. Tverd. Tela (St. Petersburg) 41, 1385–1388 (August 1999)  相似文献   

9.
The photoluminescence of cobalt (0.05 mol %) doped CdIn2S4 has been measured in the range 8500–16500 cm-1. Luminescence is observed from both tetrahedrally and octahedrally coordinated Co2+ ions in the partially inverted spinel. Vibrationally assisted transitions from the 2E(G) state of both of these sites are identified. The 4A2(F) level of the tetrahedrally coordinated Co2+ is found to be 1927 cm-1 above the CdIn2S4 valence band and the spin-orbit splitting factor is measured to be λ = -133 cm-1.  相似文献   

10.
The features of the electronic structure of Yb4d, N1s, C1s, O1s, Br3d core levels and the valence band of ytterbium metalloporphyrins Yb(acac)TPPBr8, Yb(acac)TPP, TPPBr8, and TPP are studied by photoelectron spectroscopy. The position and structure of the Yb4f level for Yb(acac)TPPBr8 are determined by resonant photoemission at the BESSY-II synchrotron center. Simulations of the electronic structure of the valence band show good agreement between the calculated and experimental data. The change in the electronic structure of porphyrins during implantation of the central atom of ytterbium, namely, a more uniform redistribution of the electron density between nitrogen atoms of pyrrole and aza groups, is revealed. The photoelectron spectra of Yb4d states demonstrate the trivalent metal state (Yb3+) in rare-earth metalloporphyrins. The partial destruction of bromine ytterbium tetraphenylporphyrin compound as a result of thermal action is demonstrated.  相似文献   

11.
The electronic band structure of the partially inverse spinel MgIn2S4 has been calculated on the symmetry lines ΓΛL, ΓΔX and ΓΣK by the semiempirical pseudopotential method. The general features of the band structure of MgIn2S4 are quite similar to those of the normal spinel CdIn2S4. The conduction band minimum is located at Γ and the valence band maximum is along the Σ line. The indirect energy gap (Γ1cΣ4v) is 2.50 eV. The effects of magnesium vacancy and variations in the cation distribution and in the parameter u are examined and shown to be small.  相似文献   

12.
The electron distribution in the valence band from single crystals of titanium carbide has been studied by photoelectron spectroscopy with photon energies h?ω = 16.8, 21.2, 40.8 and 1486.6 eV. The most conspicious feature of the electron distribution curves for TiC is a hybridization between the titanium 3d and carbon 2p states at ca. 3–4-eV binding energy, and a single carbon 2s band at ca. 10 eV. By taking into account the strong symmetry and energy dependence of the photoionization crosssections, as well as the surface sensitivity, we have identified strong emission from a carbon 2p band at ? 2.9-eV energy. Our results are compared with several recent energy band structure calculations and other experimental data. Results from pure titanium, which have been used for reference purposes, are also presented.The valence band from single crystals of titanium carbide have been studied by means of photoelectron spectroscopy, with photon energies ranging from 16.8 to 1486.6 eV.By taking into account effects such as the symmetry and energy dependence of the photoionization cross-sections and surface sensitivity, we have found the valence band of titanium carbide to consist of two peaks. The upper part of the valence band at 3–4 eV below the Fermi level consists of a hybridization between Ti 3d and C 2p states. The C 2p states observed in our spectra were mainly excited from a band about 2.9 eV below the Fermi level. The APW5–9, MAPW10 and EPM11 band structure calculations predict a flat band of p-character between the symmetry points X4 and K3, most likely responsible for the majority of C 2p excitations observed. The C 2s states, on the other hand, form a single band centered around ?10.4 eV.The results obtained are consistent with several recent energy band structure calculations5–11, 13 that predict a combined bonding of covalent, ionic and metallic nature.  相似文献   

13.
The electronic structure of MgS and MgYb2S4 have been studied using the fine structure of the Mg-K, S-K, Mg-L2,3, S-L2,3 and Yb-N5 edges measured by electron energy-loss spectroscopy (EELS). Our experimental results are compared with real-space full multiple scattering calculations as incorporated in the FEFF9.6 code. All edges are very well reproduced. Total and partial densities of states have been calculated. The calculated densities of states of Mg and S are similar in both compounds. The energy distribution of these states suggests a covalent nature for both materials. For MgYb2S4 a band gap smaller than for MgS is predicted. In this compound the top of the valence band and the bottom of the conduction band are dominated by Yb states.  相似文献   

14.
The energy band structure of mechanically free and compressed LiRbSO4 single crystals is investigated. It is established that the top of the valence band is located at the D point of the Brillouin zone [k = (0.5, 0.5, 0)], the bottom of the conduction band lies at the Γ point, and the minimum direct band gap E g is equal to 5.20 eV. The bottom of the conduction band is predominantly formed by the Li s, Li p, Rb s, and Rb p states hybridized with the S p and O p antibonding states. The pressure coefficients corresponding to the energies of the valence and conduction band states and the band gap E g are determined, and the pressure dependences of the refractive indices n i are analyzed.  相似文献   

15.
The electronic structure and chemical bonding in HgGa2S4 crystals grown by vapor transport method are investigated with X-ray photoemission spectroscopy. The valence band of HgGa2S4 is found to be formed by splitted S 3p and Hg 6s states at binding energies BE=3-7 eV and the components at BE=7-11 eV generated by the hybridization of S 3s and Ga 4s states with a strong contribution from the Hg 5d states. At higher binding energies the emission lines related to the Hg 4f, Ga 3p, S 2p, S 2s, Hg 4d, Ga LMM, Ga 3p and S LMM states are analyzed in the photoemission spectrum. The measured core level binding energies are compared with those of HgS, GaS, AgGaS2 and SrGa2S4 compounds. The valence band spectrum proves to be independent on the technological conditions of crystal growth. In contrast to the valence band spectrum, the distribution of electron states in the bandgap of HgGa2S4 crystals is found to be strongly dependent upon the technological conditions of crystal growth as demonstrated by the photoluminescence analysis.  相似文献   

16.
This paper reports on a study of the magnetic susceptibility, x-ray photoelectron, and x-ray emission spectra of the LiCoO2?δ and NaxCoO2 nonstoichiometric oxides. The valence-band structure of LiCoO2 was analyzed. The hole concentration in the oxygen 2p band of LiNiO2 and LiCoO2 was derived from measurements of the O Kα emission spectra. Measurements of Co 2p and Co 3s photoelectron spectra showed that the Co3+ ions reside in the low-spin state with S=0. The deficiency of oxygen in the LiCoO2?δ reduced oxides gives rise to the formation of divalent cobalt ions. The deficiency of the alkali metal in NaxCoO2 initiates the formation of holes in the oxygen 2p band while not changing the electronic configuration d 6 of the cobalt-ion ground state.  相似文献   

17.
S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
赵宗彦  柳清菊  朱忠其  张瑾 《物理学报》2008,57(6):3760-3768
采用基于第一性原理的平面波超软赝势方法研究了掺杂不同价态S的锐钛矿相TiO2的晶体结构、杂质形成能、电子结构及光学性质.计算结果表明硫在掺杂体系中的存在形态与实验中的制备条件有关;掺杂后晶格发生畸变、原子间的键长及原子的电荷量也发生了变化,导致晶体中的八面体偶极矩增大; S 3p态与O 2p态、Ti 3d态杂化而使导带位置下移、价带位置上移及价带宽化,从而导致TiO2的禁带宽度变窄、光吸收曲线红移到可见光区.这些结果很好地解释了S掺杂锐钛矿相TiO2在可见光下具有优良的光催化性能的内在原因.根据计算结果分析比较了硫以不同离子价态掺杂对锐钛矿相TiO2电子结构和光催化性能影响的差别. 关键词: 2')" href="#">锐钛矿相TiO2 S掺杂 第一性原理 光催化性能  相似文献   

18.
The spin-polarized electronic band structures, density of states (DOS), and magnetic properties of Co-Mn-based Heusler alloys CoMnSb and Co2MnSb have been studied by first-principles method. The calculations were performed by using the full-potential linearized augmented plane wave (FP-LAPW) within the spin-polarized density functional theory and generalized gradient approximation (GGA). Calculated electronic band structures and the density of states are discussed in terms of the contribution of Co 3d74s2, Mn 3d54s2, and Sb 5s25p3 partial density of states and the spin magnetic moments were also calculated. The results reveal that both CoMnSb and Co2MnSb have stable ferromagnetic ground state. They are ideal half-metallic (HM) ferromagnet at their equilibrium lattice constants. The calculated total spin magnetic moments are 3μB for CoMnSb and 6μB for Co2MnSb per unit cell, which agree with the Slater-Pauling rule quite well.  相似文献   

19.
The electronic structure of the DyNi2Mn x rare-earth (RE) intermetallides whose cubic structure is similar to the structure of RT2 compounds is studied. Resonant photoemission and X-ray absorption methods are used in the vicinity of the 2p- and 3p-excitation thresholds of transition elements and the 3p-, 3d-, and 4d-thresholds of RE metals to find the Ni, Mn 3d-, and R 4f-partial densities of the states in the valent band. The use of resonant photoemission allows us to establish features of the interaction between the unfinished 4f-shells of ions of RE metals with ions of the transition 3d-elements in RNi2Mn x compounds. The contributions from atoms of various elements to the structure of the valent band are separated, and the basic regularities of band formation during the introduction of manganese atoms are found.  相似文献   

20.
The paper presents the X-ray photoelectron spectra (XPS) of the valence band and core levels of semiconductor ferroelectric Sb2S3 single crystals, which show weak phase transitions and anomalies of various physical properties. The XPS were measured with monochromatized Al K α radiation in the energy range 0-1450 eV and the temperature range 160-450 K. The valence band is located 0.8-7.5 eV below the Fermi level. Experimental results of the valence band and core levels are compared with the results of theoretical ab initio calculations of the molecular model of Sb2S3 crystal. The chemical shifts in Sb2S3 crystal for the Sb and S states are obtained. Results revealed that the small structural rearrangements at the phase transition T c1 = 300 K shift the Fermi level and all electronic spectrum. Also, temperature dependence of a spontaneous polarisation shifts the electronic spectra of the valence band and core levels. Specific temperature-dependent excitations in Sb 3d core levels are also revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号