首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We generalize and refine results from the author's paper [18]. For a completely regular Hausdorff space X, υX denotes the Hewitt realcompactification of X. It is proved that if υ(X×Y)=υX×υY for any metacompact subparacompact (or m-paracompact) space Y, then X is locally compact. A P(n)-space is a space in which every intersection of less than n open sets is open. A characterization of those spaces X such that υ (X×Y = υX×υY for any (metacompact) P(n)-space Y is also obtained.  相似文献   

2.
Within the class of Tychonoff spaces, and within the class of topological groups, most of the natural questions concerning ‘productive closure’ of the subclasses of countably compact and pseudocompact spaces are answered by the following three well-known results: (1) [ZFC] There is a countably compact Tychonoff space X such that X × X is not pseudocompact; (2) [ZFC] The product of any set of pseudocompact topological groups is pseudocompact; and (3) [ZFC+ MA] There are countably compact topological groups G0, G1 such that G0 × G1 is not countably compact.In this paper we consider the question of ‘productive closure” in the intermediate class of homogeneous spaces. Our principal result, whose proof leans heavily on a simple, elegant result of V.V. Uspenski?, is this: In ZFC there are pseudocompact, homogeneous spaces X0, X1 such that X0 × X1 is not pseudocompact; if in addition MA is assumed, the spaces Xi may be chosen countably compact.Our construction yields an unexpected corollary in a different direction: Every compact space embeds as a retract in a countably compact, homogeneous space. Thus for every cardinal number α there is a countably compact, homogeneous space whose Souslin number exceeds α.  相似文献   

3.
Let Cα(X,Y) be the set of all continuous functions from X to Y endowed with the set-open topology where α is a hereditarily closed, compact network on X which is closed under finite unions. We proved that the density of the space Cα(X,Y) is at most iw(X)⋅d(Y) where iw(X) denotes the i-weight of the Tychonoff space X, and d(Y) denotes the density of the space Y when Y is an equiconnected space with equiconnecting function Ψ, and Y has a base consists of Ψ-convex subsets of Y. We also prove that the equiconnectedness of the space Y cannot be replaced with pathwise connectedness of Y. In fact, it is shown that for each infinite cardinal κ, there is a pathwise connected space Y such that π-weight of Y is κ, but Souslin number of the space Ck([0,1],Y) is κ2.  相似文献   

4.
In this paper we explore a family of strong completeness properties in GO-spaces defined on sets of real numbers with the usual linear ordering. We show that if τ is any GO-topology on the real line R, then (R,τ) is subcompact, and so is any Gδ-subspace of (R,τ). We also show that if (X,τ) is a subcompact GO-space constructed on a subset XR, then X is a Gδ-subset of any space (R,σ) where σ is any GO-topology on R with τ=σX|. It follows that, for GO-spaces constructed on sets of real numbers, subcompactness is hereditary to Gδ-subsets. In addition, it follows that if (X,τ) is a subcompact GO-space constructed on any set of real numbers and if τS is the topology obtained from τ by isolating all points of a set SX, then (X,τS) is also subcompact. Whether these two assertions hold for arbitrary subcompact spaces is not known.We use our results on subcompactness to begin the study of other strong completeness properties in GO-spaces constructed on subsets of R. For example, examples show that there are subcompact GO-spaces constructed on subsets XR where X is not a Gδ-subset of the usual real line. However, if (X,τ) is a dense-in-itself GO-space constructed on some XR and if (X,τ) is subcompact (or more generally domain-representable), then (X,τ) contains a dense subspace Y that is a Gδ-subspace of the usual real line. It follows that (Y,τY|) is a dense subcompact subspace of (X,τ). Furthermore, for a dense-in-itself GO-space constructed on a set of real numbers, the existence of such a dense subspace Y of X is equivalent to pseudo-completeness of (X,τ) (in the sense of Oxtoby). These results eliminate many pathological sets of real numbers as potential counterexamples to the still-open question: “Is there a domain-representable GO-space constructed on a subset of R that is not subcompact”? Finally, we use our subcompactness results to show that any co-compact GO-space constructed on a subset of R must be subcompact.  相似文献   

5.
A space Y is called an extension of a space X if Y contains X as a dense subspace. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X point-wise. For two (equivalence classes of) extensions Y and Y of X let Y?Y if there is a continuous function of Y into Y which fixes X point-wise. An extension Y of X is called a one-point extension of X if Y?X is a singleton. Let P be a topological property. An extension Y of X is called a P-extension of X if it has P.One-point P-extensions comprise the subject matter of this article. Here P is subject to some mild requirements. We define an anti-order-isomorphism between the set of one-point Tychonoff extensions of a (Tychonoff) space X (partially ordered by ?) and the set of compact non-empty subsets of its outgrowth βX?X (partially ordered by ⊆). This enables us to study the order-structure of various sets of one-point extensions of the space X by relating them to the topologies of certain subspaces of its outgrowth. We conclude the article with the following conjecture. For a Tychonoff spaces X denote by U(X) the set of all zero-sets of βX which miss X.
Conjecture. For locally compact spaces X and Y the partially ordered sets(U(X),⊆)and(U(Y),⊆)are order-isomorphic if and only if the spacesclβX(βX?υX)andclβY(βY?υY)are homeomorphic.  相似文献   

6.
It is shown that the space Cp(τω) is a D-space for any ordinal number τ, where . This conclusion gives a positive answer to R.Z. Buzyakova's question. We also prove that another special example of Lindelöf space is a D-space. We discuss the D-property of spaces with point-countable weak bases. We prove that if a space X has a point-countable weak base, then X is a D-space. By this conclusion and one of T. Hoshina's conclusion, we have that if X is a countably compact space with a point-countable weak base, then X is a compact metrizable space. In the last part, we show that if a space X is a finite union of θ-refinable spaces, then X is a αD-space.  相似文献   

7.
The complete Boolean homomorphisms from the category algebra C(X) of a complete matrix space X to the category algebra C(Y) of a Baire topological space Y are characterized as those σ-homomorphisms which are induced by continuous maps from dense G8-subsets of Y into X. This result is used to deduce a series of related results in topology and measure theory (some of which are well-known). Finally a similar result for the complete Boolean homomorphisms from the category algebra C(X) of a compact Hausdorff space X tothe category algebra C(Y) of a Baire topological space Y is proved.  相似文献   

8.
The main results of the paper are as follows: covering characterizations of wQN-spaces, covering characterizations of QN-spaces and a theorem saying that Cp(X) has the Arkhangel'ski?ˇ property (α1) provided that X is a QN-space. The latter statement solves a problem posed by M. Scheepers [M. Scheepers, Cp(X) and Arhangel'ski?ˇ's αi-spaces, Topology Appl. 89 (1998) 265-275] and for Tychonoff spaces was independently proved by M. Sakai [M. Sakai, The sequence selection properties of Cp(X), Preprint, April 25, 2006]. As the most interesting result we consider the equivalence that a normal topological space X is a wQN-space if and only if X has the property S1(Γshr,Γ). Moreover we show that X is a QN-space if and only if Cp(X) has the property (α0), and for perfectly normal spaces, if and only if X has the covering property (β3).  相似文献   

9.
We characterize those topological spaces Y for which the Isbell and finest splitting topologies on the set C(X,Y) of all continuous functions from X into Y coincide for all topological spaces X. We also consider the same question for the coincidence of the restriction of the finest splitting topology on the upper semicontinuous set-valued functions to C(X,Y) and the finest splitting topology on C(X,Y). In the first case, the spaces in question are, after identifying points that are in each others closures, subsets of the two point Sierpiński space, which gives a converse and generalization of a result of S. Dolecki, G.H. Greco, and A. Lechicki. In the second case, the spaces in question are, after identifying points that are in each others closures, order bases for bounded complete continuous DCPOs with the Scott topology.  相似文献   

10.
The following example is constructed without any set-theoretic assumptions beyond ZFC: There exist a hereditarily separable hereditarily Lindelöf space X and a first-countable locally compact separable pseudocompact space Y such that dim X = dimY = 0, while dim(X × Y)>0.  相似文献   

11.
A metric space X is straight if for each finite cover of X by closed sets, and for each real valued function f on X, if f is uniformly continuous on each set of the cover, then f is uniformly continuous on the whole of X. A locally connected space is straight iff it is uniformly locally connected (ULC). It is easily seen that ULC spaces are stable under finite products. On the other hand the product of two straight spaces is not necessarily straight. We prove that the product X×Y of two metric spaces is straight if and only if both X and Y are straight and one of the following conditions holds:
(a)
both X and Y are precompact;
(b)
both X and Y are locally connected;
(c)
one of the spaces is both precompact and locally connected.
In particular, when X satisfies (c), the product X×Z is straight for every straight space Z.Finally, we characterize when infinite products of metric spaces are ULC and we completely solve the problem of straightness of infinite products of ULC spaces.  相似文献   

12.
A point p ∈ βX\X is a remote point of X if p? clβXD for any nowhere dense D ? X. Van Douwen, and independently Chae and Smith, have shown that each non-pseudocompact space of countable π-weight has a remote point. Van Mill showed that many spaces of π-weight ω1, such as ω×2ω1 also have remote points.We show that arbitrarily large products of spaces with countable π-weight which are not pseudocompact have remote points. In particular, ω×2? for any infinite cardinal ?.  相似文献   

13.
For every space X let K(X) be the set of all compact subsets of X. Christensen [J.P.R. Christensen, Necessary and sufficient conditions for measurability of certain sets of closed subsets, Math. Ann. 200 (1973) 189-193] proved that if X,Y are separable metrizable spaces and F:K(X)→K(Y) is a monotone map such that any LK(Y) is covered by F(K) for some KK(X), then Y is complete provided X is complete. It is well known [J. Baars, J. de Groot, J. Pelant, Function spaces of completely metrizable space, Trans. Amer. Math. Soc. 340 (1993) 871-879] that this result is not true for non-separable spaces. In this paper we discuss some additional properties of F which guarantee the validity of Christensen's result for more general spaces.  相似文献   

14.
Let π:XY be a surjective continuous map between Tychonoff spaces. The map π induces, by composition, an injective morphism C(Y)→C(X) between the corresponding rings of real-valued continuous functions, and this morphism allows us to consider C(Y) as a subring of C(X). This paper deals with finiteness properties of the ring extension C(Y)⊆C(X) in relation to topological properties of the map π:XY. The main result says that, for X a compact subset of Rn, the extension C(Y)⊆C(X) is integral if and only if X decomposes into a finite union of closed subsets such that π is injective on each one of them.  相似文献   

15.
Making extensive use of small transfinite topological dimension trind, we ascribe to every metric space X an ordinal number (or −1 or Ω) tHD(X), and we call it the transfinite Hausdorff dimension of X. This ordinal number shares many common features with Hausdorff dimension. It is monotone with respect to subspaces, it is invariant under bi-Lipschitz maps (but in general not under homeomorphisms), in fact like Hausdorff dimension, it does not increase under Lipschitz maps, and it also satisfies the intermediate dimension property (Theorem 2.7). The primary goal of transfinite Hausdorff dimension is to classify metric spaces with infinite Hausdorff dimension. Indeed, if tHD(X)?ω0, then HD(X)=+∞. We prove that tHD(X)?ω1 for every separable metric space X, and, as our main theorem, we show that for every ordinal number α<ω1 there exists a compact metric space Xα (a subspace of the Hilbert space l2) with tHD(Xα)=α and which is a topological Cantor set, thus of topological dimension 0. In our proof we develop a metric version of Smirnov topological spaces and we establish several properties of transfinite Hausdorff dimension, including its relations with classical Hausdorff dimension.  相似文献   

16.
The relations between zero-dimensional homogeneous spaces and h-homogeneous ones are investigated. We suggest an indication of h  -homogeneity for a homogeneous zero-dimensional paracompact space and its modification for a topological group. We describe some cases when the product X×YX×Y is an h-homogeneous space provided X is h-homogeneous and Y is homogeneous.  相似文献   

17.
We consider the question: when is a dense subset of a space XC-embedded in X? We introduce the notion of o-tightness and prove that if each finite subproduct of a product X = Πα?AXα has a countable o-tightness and Y is a subset of X such that πB(Y) = Πα?BXα for every countable B ? A, then Y is C-embedded in X. This result generalizes some of Noble and Ulmer's results on C-embedding.  相似文献   

18.
We continue the study of Selectively Separable (SS) and, a game-theoretic strengthening, strategically selectively separable spaces (SS+) (see Barman, Dow (2011) [1]). The motivation for studying SS+ is that it is a property possessed by all separable subsets of Cp(X) for each σ-compact space X. We prove that the winning strategy for countable SS+ spaces can be chosen to be Markov. We introduce the notion of being compactlike for a collection of open sets in a topological space and with the help of this notion we prove that there are two countable SS+ spaces such that the union fails to be SS+, which contrasts the known result about SS spaces. We also prove that the product of two countable SS+ spaces is again countable SS+. One of the main results in this paper is that the proper forcing axiom, PFA, implies that the product of two countable Fréchet spaces is SS, a statement that was shown in Barman, Dow (2011) [1] to consistently fail. An auxiliary result is that it is consistent with the negation of CH that all separable Fréchet spaces have π-weight at most ω1.  相似文献   

19.
For a Tychonoff space X, we denote by Cλ(X) the space of all real-valued continuous functions on X with set-open topology. In this paper, we study the topological-algebraic properties of Cλ(X). Our main results state that (1) Cλ(X) is a topological vector space (a topological group) iff λ is a family of C-compact sets and Cλ(X)=Cλ(X), where λ consists of all C-compact subsets of every set of λ. In particular, if Cλ(X) is a topological group, then the set-open topology coincides with the topology of uniform convergence on a family λ; (2) a topological group Cλ(X) is ω-narrow iff λ is a family of metrizable compact subsets of X.  相似文献   

20.
A topological space X is compact iff the projection π:X×YY is closed for any space Y. Taking this as a definition and then asking that π maps α-closed subspaces of X×Y onto β-closed subspaces of Y, for different closures α and β, extends the notion of compactness to include also examples of “asymmetric compactness” pursued in the article.Categorical closure operators and a so-called “functional approach to general topology” are employed to define and prove fundamental properties of compact objects and proper maps in this generalised setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号