首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present a detailed study of short-time dynamic properties in concentrated suspensions of charge-stabilized and of neutral colloidal spheres. The particles in many of these systems are subject to significant many-body hydrodynamic interactions. A recently developed accelerated Stokesian dynamics (ASD) simulation method is used to calculate hydrodynamic functions, wave-number-dependent collective diffusion coefficients, self-diffusion and sedimentation coefficients, and high-frequency limiting viscosities. The dynamic properties are discussed in dependence on the particle concentration and salt content. Our ASD simulation results are compared with existing theoretical predictions, notably those of the renormalized density fluctuation expansion method of Beenakker and Mazur [Physica A 126, 349 (1984)], and earlier simulation data on hard spheres. The range of applicability and the accuracy of various theoretical expressions for short-time properties are explored through comparison with the simulation data. We analyze, in particular, the validity of generalized Stokes-Einstein relations relating short-time diffusion properties to the high-frequency limiting viscosity, and we point to the distinctly different behavior of de-ionized charge-stabilized systems in comparison to hard spheres.  相似文献   

2.
3.
The structure factors, short- and long-time diffusion coefficients, and hydrodynamic interactions of concentrated poly(N-isopropylacryamide) microgel suspensions were measured with simultaneous static and dynamic three-dimensional cross-correlated light scattering. The data are interpreted through comparison to hard sphere theory. The structure factors are known to be described well by the hard sphere approximation. When the structure factor is fit to an effective hard sphere volume fraction and radius, the diffusion and hydrodynamic interactions are also well described by the hard sphere model. We demonstrate that one single hard sphere volume fraction is sufficient to describe the microgel structures, hydrodynamic interactions, and long- and short-time collective diffusion coefficients. This result is surprising because the particle form of the microgels at these temperatures is not rigid, but rather "fuzzy" spheres with dangling polymer chains.  相似文献   

4.
In our recent work on concentrated suspensions of uniformly porous colloidal spheres with excluded volume interactions, a variety of short-time dynamic properties were calculated, except for the rotational self-diffusion coefficient. This missing quantity is included in the present paper. Using a precise hydrodynamic force multipole simulation method, the rotational self-diffusion coefficient is evaluated for concentrated suspensions of permeable particles. Results are presented for particle volume fractions up to 45% and for a wide range of permeability values. From the simulation results and earlier results for the first-order virial coefficient, we find that the rotational self-diffusion coefficient of permeable spheres can be scaled to the corresponding coefficient of impermeable particles of the same size. We also show that a similar scaling applies to the translational self-diffusion coefficient considered earlier. From the scaling relations, accurate analytic approximations for the rotational and translational self-diffusion coefficients in concentrated systems are obtained, useful to the experimental analysis of permeable-particle diffusion. The simulation results for rotational diffusion of permeable particles are used to show that a generalized Stokes-Einstein-Debye relation between rotational self-diffusion coefficient and high-frequency viscosity is not satisfied.  相似文献   

5.
We report a dynamic light scattering study on protein suspensions of bovine lens homogenates at conditions (pH and ionic strength) similar to the physiological ones. Light scattering data were collected at two temperatures, 20 and 37 degrees C, over a wide range of concentrations from the very dilute limit up to the dense regime approaching the physiological lens concentration. A comparison with experimental data from intact bovine lenses was advanced, revealing differences between dispersions and lenses at similar concentrations. In the dilute regime, two scattering entities were detected and identified with the long-time self-diffusion modes of alpha-crystallins and their aggregates, which naturally exist in lens nucleus. Upon increasing protein concentration, significant changes in time correlation function were observed starting at approximately 75 mg ml(-1), where a new mode originating from collective diffusive motions becomes visible. Self-diffusion coefficients are temperature insensitive, whereas the collective diffusion coefficient depends strongly on temperature revealing a reduction of the net repulsive interparticle forces with decreasing temperature. While there are no rigorous theoretical approaches on particle diffusion properties for multicomponent, nonideal hard sphere polydispersed systems, as the suspensions studied here, a discussion of the volume fraction dependence of the long-time self-diffusion coefficient in the context of existing theoretical approaches was undertaken. This study is purported to provide some insight into the complex light scattering pattern of intact lenses and the interactions between the constituent proteins that are responsible for lens transparency. This would lead to understand basic mechanisms of specific protein interactions that lead to lens opacification (cataract) under pathological conditions.  相似文献   

6.
We used x-ray photon correlation spectroscopy to study the dynamics in the lamellar phase of a platelet suspension as a function of the particle concentration. We measured the collective diffusion coefficient along the director of the phase, over length scales down to the interparticle distance, and quantified the hydrodynamic interaction between the particles. This interaction sets in with increasing concentration and can be described qualitatively by a simplified model. No change in the microscopic structure or dynamics is observed at the transition between the fluid and the gel-like lamellar phases.  相似文献   

7.
The principles and techniques of dynamic light scattering (DLS) are outlined and its application to the study of suspensions of interacting colloidal particles is discussed. We show how, under appropriate conditions, DLS can measure long-time collective and self-diffusion coefficients as well as study short-time motions (characterized by the cumulants). These theoretical considerations are illustrated by experimental data. Finally, we discuss the relevance of certain characteristic timescales to theories of the diffusion of interacting particles.  相似文献   

8.
本文用光子相关光谱技术研究了聚苯乙烯-二乙烯基苯(PSt-DVB)共聚超微粒的溶液性质.该微粒的浓度涨落时间相关函数在波矢为q时,有指数衰减形式,其衰减速率г=q~2D_t.在精确的实验误差范围内,衰减速率的变化率为零。用累积量方法解析散射场的一阶时间相关方程,得到了作为浓度和温度函数的微粒扩散常数.与流体办学方程结合,计算出了微粒的流体力学尺寸.通过实验也确定了微粒在良溶剂中的分子形态.  相似文献   

9.
Short-time dynamic properties of concentrated suspensions of colloidal core-shell particles are studied using a precise force multipole method which accounts for many-particle hydrodynamic interactions. A core-shell particle is composed of a rigid, spherical dry core of radius a surrounded by a uniformly permeable shell of outer radius b and hydrodynamic penetration depth κ(-1). The solvent flow inside the permeable shell is described by the Brinkman-Debye-Bueche equation, and outside the particles by the Stokes equation. The particles are assumed to interact non-hydrodynamically by a hard-sphere no-overlap potential of radius b. Numerical results are presented for the high-frequency shear viscosity, η(∞), sedimentation coefficient, K, and the short-time translational and rotational self-diffusion coefficients, D(t) and D(r). The simulation results cover the full three-parametric fluid-phase space of the composite particle model, with the volume fraction extending up to 0.45, and the whole range of values for κb, and a/b. Many-particle hydrodynamic interaction effects on the transport properties are explored, and the hydrodynamic influence of the core in concentrated systems is discussed. Our simulation results show that for thin or hardly permeable shells, the core-shell systems can be approximated neither by no-shell nor by no-core models. However, one of our findings is that for κ(b - a) ? 5, the core is practically not sensed any more by the weakly penetrating fluid. This result is explained using an asymptotic analysis of the scattering coefficients entering into the multipole method of solving the Stokes equations. We show that in most cases, the influence of the core grows only weakly with increasing concentration.  相似文献   

10.
In this work, we use molecular simulations to study the loading dependence of the self-and collective diffusion coefficients of methane in various zeolite structures. To arrive at a microscopic interpretation of the loading dependence, we interpret the diffusion behavior in terms of hopping rates over a free-energy barrier. These free-energy barriers are computed directly from a molecular simulation. We show that these free-energy profiles are a convenient starting point to explain a particular loading dependence of the diffusion coefficient. On the basis of these observations, we present a classification of zeolite structures for the diffusion of methane as a function of loading: three-dimensional cagelike structures, one-dimensional channels, and intersecting channels. Structures in each of these classes have their loading dependence of the free-energy profiles in common. An important conclusion of this work is that diffusion in nanoporous materials can never be described by one single effect so that we need to distinguish different loading regimes to describe the diffusion over the entire loading range.  相似文献   

11.
Translational tracer diffusion of spherical macromolecules in crowded suspensions of rodlike colloids is investigated. Experiments are done using several kinds of spherical tracers in fd-virus suspensions. A wide range of size ratios L/2a of the length L of the rods and the diameter 2a of the tracer sphere is covered by combining several experimental methods: fluorescence correlation spectroscopy for small tracer spheres, dynamic light scattering for intermediate sized spheres, and video microscopy for large spheres. Fluorescence correlation spectroscopy is shown to measure long-time diffusion only for relatively small tracer spheres. Scaling of diffusion coefficients with a/xi, predicted for static networks, is not found for our dynamical network of rods (with xi the mesh size of the network). Self-diffusion of tracer spheres in the dynamical network of freely suspended rods is thus fundamentally different as compared to cross-linked networks. A theory is developed for the rod-concentration dependence of the translational diffusion coefficient at low rod concentrations for freely suspended rods. The proposed theory is based on a variational solution of the appropriate Smoluchowski equation without hydrodynamic interactions. The theory can, in principle, be further developed to describe diffusion through dynamical networks at higher rod concentrations with the inclusion of hydrodynamic interactions. Quantitative agreement with the experiments is found for large tracer spheres, and qualitative agreement for smaller spheres. This is probably due to the increasing importance of hydrodynamic interactions as compared to direct interactions as the size of the tracer sphere decreases.  相似文献   

12.
We calculate the pair diffusion coefficient D(r) as a function of the distance r between two hard sphere particles in a dense monodisperse fluid. The distance-dependent pair diffusion coefficient describes the hydrodynamic interactions between particles in a fluid that are central to theories of polymer and colloid dynamics. We determine D(r) from the propagators (Green's functions) of particle pairs obtained from molecular dynamics simulations. At distances exceeding ~3 molecular diameters, the calculated pair diffusion coefficients are in excellent agreement with predictions from exact macroscopic hydrodynamic theory for large Brownian particles suspended in a solvent bath, as well as the Oseen approximation. However, the asymptotic 1/r distance dependence of D(r) associated with hydrodynamic effects emerges only after the pair distance dynamics has been followed for relatively long times, indicating non-negligible memory effects in the pair diffusion at short times. Deviations of the calculated D(r) from the hydrodynamic models at short distances r reflect the underlying many-body fluid structure, and are found to be correlated to differences in the local available volume. The procedure used here to determine the pair diffusion coefficients can also be used for single-particle diffusion in confinement with spherical symmetry.  相似文献   

13.
We present dynamic light scattering (DLS) measurements of soft poly(methyl-methacrylate) (PMMA) and polyacrylamide (PA) polymer gels prepared with trapped bodies (latex spheres or magnetic nanoparticles). We show that the anomalous diffusivity of the trapped particles can be analyzed in terms of a fractal Gaussian network gel model for the entire time range probed by DLS technique. This model is a generalization of the Rouse model for linear chains extended for structures with power law network connectivity scaling, which includes both percolating and uniform bulk gel limits. For a dilute dispersion of strongly scattering particles trapped in a gel, the scattered electric field correlation function at small wavevector ideally probes self-diffusion of gel portions imprisoning the particles. Our results show that the time-dependent diffusion coefficients calculated from the correlation functions change from a free diffusion regime at short times to an anomalous subdiffusive regime at long times (increasingly arrested displacement). The characteristic time of transition between these regimes depends on scattering vector as approximately q(-2), while the time decay power exponent tends to the value expected for a bulk network at small q. The diffusion curves for all scattering vectors and all samples were scaled to a single master curve.  相似文献   

14.
We investigate the structure and dynamics of charge-stabilized CoFe(2)O(4)-SiO(2) core-shell magnetic nanoparticles in suspensions. Small angle x-ray scattering and x-ray photon correlation spectroscopy allow us to analyze the intraparticle (core-shell) and interparticle structure of the suspension, as well as their dynamic and hydrodynamic behavior. Due to the weak magnetic interactions, the liquidlike structure is governed by screened Coulomb interactions. The hydrodynamic interactions of the measured systems are significantly stronger than predicted by current theories.  相似文献   

15.
A comprehensive study is presented on the short-time dynamics in suspensions of charged colloidal spheres. The explored parameter space covers the major part of the fluid-state regime, with colloid concentrations extending up to the freezing transition. The particles are assumed to interact directly by a hard-core plus screened Coulomb potential, and indirectly by solvent-mediated hydrodynamic interactions. By comparison with accurate accelerated Stokesian Dynamics (ASD) simulations of the hydrodynamic function H(q), and the high-frequency viscosity η(∞), we investigate the accuracy of two fast and easy-to-implement analytical schemes. The first scheme, referred to as the pairwise additive (PA) scheme, uses exact two-body hydrodynamic mobility tensors. It is in good agreement with the ASD simulations of H(q) and η(∞), for smaller volume fractions up to about 10% and 20%, respectively. The second scheme is a hybrid method combining the virtues of the δγ scheme by Beenakker and Mazur with those of the PA scheme. It leads to predictions in good agreement with the simulation data, for all considered concentrations, combining thus precision with computational efficiency. The hybrid method is used to test the accuracy of a generalized Stokes-Einstein (GSE) relation proposed by Kholodenko and Douglas, showing its severe violation in low salinity systems. For hard spheres, however, this GSE relation applies decently well.  相似文献   

16.
In this review article, we focus on collective motion in externally driven colloidal suspensions, as well as how these collective effects can be harnessed for use in microfluidic applications. We highlight the leading role of hydrodynamic interactions in the self-assembly, emergent behavior, transport, and mixing properties of colloidal suspensions. A special emphasis is given to recent numerical methods to simulate driven colloidal suspensions at large scales. In combination with experiments, they help us to understand emergent dynamics and to identify control parameters for both individual and collective motion in colloidal suspensions.  相似文献   

17.
We employ an analogy to traditional dynamic light scattering to describe the inhomogeneous and anisotropic diffusion of colloid particles near a solid boundary measured via evanescent wave dynamic light scattering. Following this approach, we generate new expressions for the short-time self- and collective diffusivities of colloidal dispersions with arbitrary volume fraction. We use these expressions in combination with accelerated Stokesian dynamics simulations to calculate the diffusivities in the limit of large and small scattering wave numbers for evanescent penetration depths ranging from four particle radii to one-fifth of a particle radius and volume fractions from 10% to 40%. We show that at high volume fractions, and larger penetration depths, the boundaries have little effect on the dynamics of the suspension parallel to the wall since, to a first approximation, the boundary acts hydrodynamically much as another nearby particle. However, near and normal to the wall, the diffusivity shows a strong dependence on penetration depth for all volume fractions. This is due to the lubrication interactions between the particles and the boundary as the particle moves relative to the wall. These results are novel and comprehensive with respect to the range of penetration depth and volume fraction and provide a complete determination of the effect of hydrodynamic interactions on colloidal diffusion adjacent to a rigid boundary.  相似文献   

18.
用动态光散射方法研究了酚酞型聚醚砜(PES-C)在良溶剂DMF中的稀溶液性质。在稀溶液中,PES-C分子由于内旋转发生链折叠,整体上表现出柔性链的性质,较好的符合球形模型;而分子链的局部刚性结构又使分子尺寸稳定;它的扩散行为随温度的变化符合Arrehnius方程。表征了PES-C分子在稀溶液中的形态结构,且给出了PES-C分子在DMF中的扩散系数、扩散活化能、无限稀时的扩散系数和流体力学半径等重要特征参数。  相似文献   

19.
We present investigations of the structural properties of thermoresponsive poly(N-isopropylacrylamide) (PNiPAM) microgels dispersed in an aqueous solvent. In this particular work poly(ethyleneglycol) (PEG) units flanked with acrylate groups are employed as cross-linkers, providing an architecture designed to resist protein fouling. Dynamic light scattering (DLS), static light scattering (SLS), and small angle neutron scattering (SANS) are employed to study the microgels as a function of temperature over the range 10 °C ≤ T ≤ 40 °C. DLS and SLS measurements are simultaneously performed and, respectively, allow determination of the particle hydrodynamic radius, R(h), and radius of gyration, R(g), at each temperature. The thermal variation of these magnitudes reveals the microgel deswelling at the PNiPAM lower critical solution temperature (LCST). However, the hydrodynamic radius displays a second transition to larger radii at temperatures T ≤ 20 °C. This feature is atypical in standard PNiPAM microgels and suggests a structural reconfiguration within the polymer network at those temperatures. To better understand this behavior we perform neutron scattering measurements at different temperatures. In striking contrast to the scattering profile of soft sphere microgels, the SANS profiles for T ≤ LCST of our PNiPAM-PEG suspensions indicate that the particles exhibit structural properties characteristic of star polymer configurations. The star polymer radius of gyration and correlation length gradually decrease with increasing temperature despite maintenance of the star polymer configuration. At temperatures above the LCST, the scattered SANS intensity is typical of soft sphere systems.  相似文献   

20.
The diffusion behavior of polymer latex particles in dispersion near the quartz interface has been estimated by evanescent wave dynamic light scattering (EVDLS) technique. The diffusion coefficient of the particles was measured as a function of the distance between the particle and interface. The apparent diffusion coefficient estimated by EVDLS was small for particles near the interface and increased upon increasing the distance from the interface, and then saturated at a certain value which is close to the value expected for free-motion. The range of the distance over which diffusion was affected by interaction with the interface depended on the added salt concentration. This means that the diffusion of the particle is influenced by an electrostatic interaction between the particle and quartz interface in addition to the hydrodynamic effect near the wall. This range was found to be more than 800?nm at 0?M salt condition but about 400?nm at 10-4 and 10-3?M salt conditions. Hence it is appropriate to say that the hydrodynamic effect reaches up to 400?nm and the electrostatic effect is longer ranged, more than 800?nm, for the system studied here. The EVDLS technique is a very powerful tool for quantitative estimations of the dynamic behavior of the particle near the interface and for estimation of the range where the wall effect is dominant. EVDLS will give us an answer to the question of “where is the ‘interface’ and where is the ‘bulk’?”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号