首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N N Rao 《Pramana》1997,49(1):109-127
A review of the generic features as well as the exact analytical solutions of coupled scalar field equations governing nonlinear wave modulations in plasmas is presented. Coupled sets of equations like the Zakharov system, the Schrödinger-Boussinesq system and the Schrödinger-KDV system are considered. For stationary solutions, the latter two systems yield a generic system of a pair of coupled, ordinary differential equations with many free parameters. Different classes of exact analytical solutions of the generic system which are valid in different regions of the parameter space are obtained. The generic system is shown to generalize the Hénon-Heiles equations in the field of nonlinear dynamics to include a case when the kinetic energy in the corresponding Hamiltonian is not positive definite. The relevance of the generic system to other equations like the self-dual Yang-Mills equations, the complex KDV equation and the complexified classical dynamical equations is also pointed out.  相似文献   

2.
The application of transformation group methods to a system of nonlinear partial differential equations, representing an incompressible M H D plasma, is shown. The structure of the symmetry group is investigated and a theorem of existence of the solutions of the system of equations is given. Some illustrative analytical invariant solutions and their differential invariants will be presented.  相似文献   

3.
In this paper we investigate the three-dimensional magnetohydrodynamic (MHD) rotating flow of a viscous fluid over a rotating sphere near the equator. The Navier-Stokes equations in spherical polar coordinates are reduced to a coupled system of nonlinear partial differential equations. Self-similar solutions are obtained for the steady state system, resulting from a coupled system of nonlinear ordinary differential equations. Analytical solutions are obtained and are used to study the effects of the magnetic field and the suction/injection parameter on the flow characteristics. The analytical solutions agree well with the numerical solutions of Chamkha et al. [31]. Moreover, the obtained analytical solutions for the steady state are used to obtain the unsteady state results. Furthermore, for various values of the temporal variable, we obtain analytical solutions for the flow field and present through figures.  相似文献   

4.
In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schrfdinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstra.ss elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient.  相似文献   

5.
N N Rao 《Pramana》1996,46(3):161-202
A review of the generic features as well as the exact analytical solutions of a class of coupled scalar field equations governing nonlinear wave modulations in dispersive media like plasmas is presented. The equations are derivable from a Hamiltonian function which, in most cases, has the unusual property that the associated kinetic energy is not positive definite. To start with, a simplified derivation of the nonlinear Schrödinger equation for the coupling of an amplitude modulated high-frequency wave to a suitable low-frequency wave is discussed. Coupled sets of time-evolution equations like the Zakharov system, the Schrödinger-Boussinesq system and the Schrödinger-Korteweg-de Vries system are then introduced. For stationary propagation of the coupled waves, the latter two systems yield a generic system of a pair of coupled, ordinary differential equations with many free parameters. Different classes of exact analytical solutions of the generic system of equations are then reviewed. A comparison between the various sets of governing equations as well as between their exact analytical solutions is presented. Parameter regimes for the existence of different types of localized solutions are also discussed. The generic system of equations has a Hamiltonian structure, and is closely related to the well-known Hénon-Heiles system which has been extensively studied in the field of nonlinear dynamics. In fact, the associated generic Hamiltonian is identically the same as the generalized Hénon-Heiles Hamiltonian for the case of coupled waves in a magnetized plasma with negative group dispersion. When the group dispersion is positive, there exists a novel Hamiltonian which is structurally same as the generalized Hénon-Heiles Hamiltonian but with indefinite kinetic energy. The above correspondence between the two systems has been exploited to obtain the parameter regimes for the complete integrability of the coupled waves. There exists a direct one-to-one correspondence between the known integrable cases of the generic Hamiltonian and the stationary Hamiltonian flows associated with the only integrable nonlinear evolution equations (of polynomial and autonomous type) with a scale-weight of seven. The relevance of the generic system to other equations like the self-dual Yang-Mills equations, the complex Korteweg-de Vries equation and the complexified classical dynamical equations has also been discussed.  相似文献   

6.
LI Biao  CHEN Yong   《理论物理通讯》2007,48(9):391-398
In the paper, a generalized sub-equation method is presented to construct some exact analytical solutions of nonlinear partial differential equations. Making use of the method, we present rich exact analytical solutions of the onedimensional nonlinear Schr(o)dinger equation which describes the dynamics of solitons in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. The solutions obtained include not only non-traveling wave and coefficient function's soliton solutions, but also Jacobi elliptic function solutions and Weierstrass elliptic function solutions. Some plots are given to demonstrate the properties of some exact solutions under the Feshbachmanaged nonlinear coefficient and the hyperbolic secant function coefficient.  相似文献   

7.
非定常可压等熵流非线性方程显式解析解的推导   总被引:22,自引:5,他引:17  
本文对作者以前凭试凑、灵感、运气与经验得出的一系列非定常可压流动显式解析解,寻找线索,总结出其可能的推导途径,并以非定常可压等熵一维流为例,具体给出了四种新的求解方法。这些方法会对今后寻找工程热物理领域的非线性主控方程的解析解有所帮助。本文同时还给出了两个新的解析解。  相似文献   

8.
The even and the odd supermodes of nonlinear directional couplers are determined by means of a variational approach; both slab and channel nonlinear couplers are considered. The validity of the solutions given by the analytical method and their stability properties are analysed through numerical integration of the governing equations. It is shown that channel nonlinear directional couplers improve the stability of the eigenmodes.  相似文献   

9.
A gauge-invariant nonlinear Hodge-de Rham system is introduced. These equations have the same relation to the Yang-Mills equations that the conventional nonlinear Hodge equations have to the equations of classical Hodge theory. Conditions are given under which weak solutions are locally Hölder continuous. The existence of solutions is proven for variational points of a certain class of nonquadratic energy functionals.  相似文献   

10.
In this Letter, a new kind of Lamé functions are given. Based on the new Lamé functions and Jacobi elliptic function, the perturbation method is applied to the nonlinear equations, and many multi-order solutions of novel forms are derived. In addition, it is shown that different Lamé functions can exist in the first order solutions of nonlinear system.  相似文献   

11.
A three-degrees of freedom semi-definite torsional system representing an automotive driveline is studied in presence of a torque converter clutch that manifests itself as a dry friction path. An analytical procedure based on the linear system theory is proposed first to establish the stick-to-slip boundaries. Smoothened and discontinuous Coulomb friction formulations are then applied to the nonlinear system, and the differential governing equations are numerically solved given harmonic torque excitation and a mean load. Time domain histories illustrating dry friction-induced stick–slip motions are predicted for different saturation torques and system parameters. Approximate analytical solutions based on distinct states are also developed and successfully compared with numerical studies. Analysis shows that the conditioning factor associated with the smoothened friction model (hyperbolic tangent) must be carefully selected. Then nonlinear frequency responses are constructed from cyclic time histories and the stick–slip boundaries predictions (as yielded by the linear system theory) are confirmed. In particular, the effect of secondary inertia is analytically and numerically investigated. Results show that the secondary inertia has a significant influence on the dynamic response. A quasi-discontinuous oscillation is found with the conventional bi-linear friction model in which the secondary inertia is ignored. Finally, our methods are successfully compared with two benchmark analytical and experimental studies, as available in the literature on two-degrees of freedom translational systems.  相似文献   

12.
非线性波方程求解的新方法   总被引:30,自引:0,他引:30       下载免费PDF全文
从Legendre椭圆积分和Jacobi椭圆函数的定义出发,得到了新的变换,并把它用于非线性演化方程的求解.用三个具体的例子,如非线性Klein-Gordon方程、Boussinesq方程和耦合的mKdV方程组,说明了具体的求解步骤.比较方便地得到非线性演化方程或方程组的新解析解,如周期解、孤子解等. 关键词: Jacobi椭圆函数 非线性方程 周期解 孤子解  相似文献   

13.
A transient lumped heat pipe formulation for conventional heat pipes is presented and the lumped analytical solutions for different boundary conditions at the evaporator and condenser are given. For high temperature heat pipes with a radiative boundary condition at the condenser, a nonlinear ordinary differential equation is solved. In an attempt to reduce computer demands, a transient lumped conductive model has been developed for noncondensible gas-loaded heat pipes. The lumped flat-front transient model was extended by accounting for axial heat conduction across the sharp vapor-gas interface. The analytical solutions for conventional and gas-loaded heat pipes were compared with the corresponding numerical results of the full two-dimensional conservation equations and experimental data, with good agreement.  相似文献   

14.
《Physics letters. A》2014,378(5-6):577-583
We explore the form of rogue wave solutions in a select set of case examples of nonlinear Schrödinger equations with variable coefficients. We focus on systems with constant dispersion, and present three different models that describe atomic Bose–Einstein condensates in different experimentally relevant settings. For these models, we identify exact rogue wave solutions. Our analytical findings are corroborated by direct numerical integration of the original equations, performed by two different schemes. Very good agreement between numerical results and analytical predictions for the emergence of the rogue waves is identified. Additionally, the nontrivial fate of small numerically induced perturbations to the exact rogue wave solutions is also discussed.  相似文献   

15.
The homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions for the Gross-Pitaevskii equations, a set of nonlinear Schrödinger equation used in simulation of spin-1 Bose-Einstein condensates trapped in a harmonic potential. We investigate the one-dimensional case and get the approximate analytical solutions successfully. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are in agreement well with each other when the atomic interaction is weakly. We also find a class of exact solutions for the stationary states of the spin-1 system with harmonic potential for a special case.  相似文献   

16.
A self-consistent mathematical model that includes equations of elasticity theory and kinetic equations for the density of different types of point defects is reduced to a nonlinear equation of evolution that combines the familiar Korteweg–de Vries–Burgers and Klein–Gordon equations of wave dynamics. Exact analytical solutions for this equation are found and analyzed.  相似文献   

17.
Using the machinery of Lie group analysis,the nonlinear system of coupled Burgers-type equations is studied.Using the infinitesimal generators in the optimal system of subalgebra of the said Lie algebras,it leads to two nonequivalent similarity transformations by using it we obtain two reductions in the form of system of nonlinear ordinary differential equations.The search for solutions of these systems by using the G'/G-method has yielded certain exact solutions expressed by rational functions,hyperbolic functions,and trigonometric functions.Some figures are given to show the properties of the solutions.  相似文献   

18.
杨鹏飞 《物理学报》2006,55(11):5579-5584
用函数和方程变换将二阶耦合线性微分方程组转化为一阶非线性类椭圆方程,并给出了一次和二次限定变换下方程组的Jacobi椭圆函数解析解,所得结果修正了文献中超导特例的近似解,进一步肯定了超导边界层电场的存在性. 关键词: 微分方程 Jacobi椭圆函数 解析解 超导  相似文献   

19.
20.
The symmetry reduction method based on the Fr′echet derivative of differential operators is applied to investigate symmetries of the Einstein-Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号