首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The instability of oblique shock wave (OSW) induced combustion is examined for a wedge with a flow turning angle greater than the maximum attach angle of the oblique detonation wave (ODW), where archival results rarely exist for this case in previous literatures. Numerical simulations were carried out for wedges of different length scales to account for the ratio of the chemical and fluid dynamic time scales. The results reveal three different regimes of combustion. (1) No ignition or decoupled combustion was observed if a fluid dynamic time is shorter than a chemical time behind an OSW. (2) Oscillatory combustion was observed behind an OSW if a fluid dynamic time is longer than a chemical time behind an OSW and the fluid dynamic time is shorter than the chemical time behind a normal shock wave (NSW) at the same Mach number. (3) Detached bow shock-induced combustion (or detached overdriven detonation wave) was observed if a fluid dynamic time is longer than a chemical time behind a NSW. Since no ignition or decoupled combustion occurs as a very slow reaction and the detached wave occurs as an infinitely fast reaction, the finite rate chemistry is considered to be the key for the oscillating combustion induced by an OSW over a wedge of a finite length with a flow turning angle greater than the maximum attach angle for an ODW. Since this case has not been previously reported, grid independency was tested intensively to account for the interaction between the shock and reaction waves and to determine the critical time scale where the oscillating combustion can be observed.  相似文献   

2.
来流边界层效应下斜坡诱导的斜爆轰波   总被引:1,自引:0,他引:1       下载免费PDF全文
刘彧  周进  林志勇 《物理学报》2014,63(20):204701-204701
以超声速预混气中的斜爆轰波为研究对象,对其在来流边界层效应下的特性进行了实验研究.在马赫数为3的超声速预混风洞中,通过斜坡诱导产生了斜爆轰波.当来流的当量比较低时,预混气中产生的是化学反应锋面与激波面非耦合的激波诱导燃烧现象.此时边界层分离区中的化学反应放热将使分离区尺度显著增大,流场非定常性显著增强,激波位置剧烈振荡.当来流的当量比较高时,预混气将产生斜爆轰波.此时边界层分离区会影响到斜爆轰波起爆时的形态.在小尺度分离区下,斜爆轰波起爆时呈突跃结构(有横波);在中等尺度分离区下,流场固有的非定常性使斜爆轰波呈间歇突跃结构;在大尺度分离区下,斜爆轰波起爆则呈完全的平滑结构(无横波).  相似文献   

3.
Direct initiations and stabilizations of three-dimensional conical detonation waves were attained by launching spheres with 1.06–1.31 times the C–J velocities into detonable mixtures. We conducted high time-resolution Schlieren visualizations of the whole processes over unsteady initiations to stable propagations of the stabilized Oblique Detonation Waves (ODWs) using a high-speed camera. The detonable mixtures were stoichiometric oxygen mixtures with acetylene, ethylene or hydrogen. They were diluted with argon in a 50% volumetric fraction, and a 75% diluted mixture was also tested for the acetylene/oxygen. The direct initiation of detonation by the projectile and the DDT process like the re-initiation appeared in the initiation process of stabilized ODW. This process eventually led to the stabilized ODW supported by the projectile velocity and the ringed shape detonation wave originating in the re-initiation. We modeled the spatial evolution of stabilized ODW after the re-initiation based on its C–J velocity and angle. The model qualitatively reproduced the measured development rate of stabilized ODW. We also discussed about the detonation stability for the curvature effect arising from the three-dimensional nature of stabilized ODW around the projectile. The curvature effect attenuated the detonation wave below its C–J velocity at the vicinity of projectile. The propagation limits of curvature effect will be responsible for the criticality to attain the stabilized ODWs. By accessing the detailed distributions of propagation velocities and curvature radiuses, the critical curvature radiuses normalized by the cell sizes experimentally revealed to be 8–10 or 15–18 for mixtures diluted with each 50% argon or 75% argon/krypton.  相似文献   

4.
A comprehensive numerical study was carried out to investigate the unsteady cell-like structures of oblique detonation waves (ODWs) for a fixed Mach 7 inlet flow over a wedge of 30° turning angle. The effects of grid resolution and activation energy were examined systematically at a dimensionless heat addition of 10. The ODW front remains stable for a low activation energy regardless of grid resolution, but becomes unstable for a high activation energy featuring a cell-like wave front structure. Similar to the situation with an ordinary normal detonation wave (NDW), a continuous increase in the activation energy eventually causes the wave-front oscillation to transit from a regular to an irregular pattern. The wave structure of an unstable ODW, however, differs considerably from that of a NDW. Under the present flow condition, triple points and transverse waves propagate downstream, and the numerical smoke-foil record exhibits traces of triple points that rarely intersect with each other. Several instability-driving mechanisms were conjectured from the highly refined results. Since the reaction front behind a shock wave can be easily destabilized by disturbance inherent in the flowfield, the ODW front becomes unstable and displays cell-like structures due to the local pressure oscillations and/or the reflected shock waves originating from the triple points. The combined effects of various instability sources give rise to a highly unstable and complex flow structure behind an unstable ODW front.  相似文献   

5.
Direct initiation and propagation of detonation through a cryogenic two-phase flow constituted by liquid oxygen droplets in gaseous hydrogen at 100 K are experimentally investigated. The influence of droplet size distribution is characterized in a cryogenic gaseous helium and liquid oxygen two-phase flow. Droplet sizing and detonation experiments are conducted by varying different parameters: distance from the injector, helium and hydrogen mass flow rates, global equivalence ratio and addition of gaseous nitrogen. Droplet size distributions reveal quick vaporization of the smallest droplets of the cryogenic jet. Results in terms of wave velocity, pressure, and detonation cells show that a detonation wave can be directly initiated, with a propagation wave velocity of 20% higher than the Chapman–Jouguet value. Cell size measurements show that the mixture sensitivity is not affected by the presence of droplets. Addition of gaseous nitrogen reduces only slightly the peak pressure, but the detonation velocity is reduced by about 30%.  相似文献   

6.
It is assumed that the chemical reaction of a detonation transformation, that is, burning, arises first in separate hot spots originated by the explosive compression behind or within the detonation wave front due to heterogeneity of charges, instability of the detonation wave, etc. Then the burning spreads around into the bulk of the explosive and is completed in the Chapman–Jouguet plane, where the detonation product velocity relative to the detonation front is equal to the sound velocity. A simple analytical method proposed early by the authors is used to calculate the expression for the detonation transformation time, from which it follows that there are at least two nondimensional numbers defining the possibility of the realization of the mechanism mentioned above. The first one is the Frank-Kamenetskii number, that is, the relation of the characteristic time of the cooling of the hot spot to the adiabatic induction period at some characteristic temperature of the hot spot. The hot spot mechanism is realized if the Frank-Kamenetskii number is greater than the critical one that determines the minimum possible size of hot spots capable of ignition. The second number is the relation of the detonation transformation time in the presence of hot spots to the reaction time in accordance with classical mechanism. The hot spot mechanism at detonation is realized if this number is less than unity. By means of the numbers proposed, some interpretations of available experimental data concerning the detonation process are given.  相似文献   

7.
冲击波影响下的聚能射流侵彻扩孔方程   总被引:1,自引:0,他引:1       下载免费PDF全文
 当聚能射流侵彻速度大于靶板声速时,由于冲击波的产生导致波阵面后材料的状态参数发生改变,影响聚能射流的侵彻扩孔过程,致使波阵面前后不能直接应用伯努利方程求解。在考虑侵彻过程中冲击波影响的基础上,对射流轴向侵彻和径向扩孔的力学特性进行了分析,并对冲击波的传播和衰减进行了假设,着重探讨侵彻速度大于靶板声速时冲击波的影响。针对侵彻速度大于和小于靶板声速两种情况,建立了相应的侵彻模型,提出了一个新的聚能射流侵彻扩孔方程。将该方程与Szendrei-Held模型进行了比较,结果表明,新模型更符合Held等人的实验数据,冲击波对轴向侵彻的影响远小于对径向扩孔的影响。  相似文献   

8.
We studied experimentally the shock waves and combustion waves generated by a hypersonic spherical projectile in an explosive mixture. An acetylene/oxygen mixture diluted with argon (2C2H2 + 5O2 + 7Ar) was used with various initial pressures (detonation cell sizes) to observe optically with a shadowgraph imaging system a shock-induced combustion (SIC), a stable oblique detonation wave (ODW), and a wave called a Straw Hat type consisting of a strong SIC and ODW. The criticality of stabilizing an ODW around a projectile is expressed by the ratio of the projectile diameter, d, to the cell size, λ, as d/λ = 3.63–4.84. Although the Straw Hat type wave in the vicinity of criticality is an unstable phenomena, it has been mainly observed by a single frame picture to date, so that it is difficult to discuss the time history of its wave structure. In this study, it was remarkable to directly carry out continuous optical observations using a high speed video camera which can continuously film 100 pictures with a 1 μs frame speed so as to allow an investigation of the sustaining mechanism of the unstable wave structure. Our results allowed the identification of an increase in unsteadiness in the relative distance between the projectile fronts and the transition points to an ODW as the time increased. They also showed local explosions in the SIC region near transition point transformed the ODW front upstream.  相似文献   

9.
吸气式旋转爆震发动机中燃料的良好雾化对爆震燃烧的组织极其重要, 气-液组合横向射流是其中一种重要的燃料喷注技术。为获取气体种类在超声速来流中对其的影响, 通过数值方法对液体射流穿透深度和辅助射流气体分布进行研究。采用Euler-Lagrange方法研究不同气体射流对液体射流的作用规律, 结果表明: 气体射流通过激波结构降低局部来流动量通量提升液体射流穿透深度, 相同的来流条件下气体射流动量通量越大, 液体射流穿透深度越高, 且主要影响扩张段之前的流场区域, 气体种类的变化对于后场液体射流穿透深度和雾化特性几乎无影响。   相似文献   

10.
The initiation and propagation of detonation waves in combustible high speed flows were studied experimentally. A planar detonation wave traveling in an initiation tube was transmitted into a test section where a combustible high speed flow was induced by an incident shock wave generated in a shock tube. In this study, the flow Mach numbers were obtained as 0.9 and 1.2. The experimental results show that depending on the flow velocity, the apparent propagation velocity of a detonation wave is higher in the upstream and lower in the downstream direction than the CJ velocity. Smoked plate records reveal cellular patterns deformed in the flow direction, and the calculated aspect ratios of the cell were found to agree well with the experimental ones on the basis of the assumption that the velocity of the transverse wave is not affected by the flowing mixture. By analyzing the shock-wave diffraction at the position where there is an abrupt change in the area, on the basis of Whitham’s theory, it was deduced that in the present experimental set-up, the detonation was initiated by the reflection of the diffracted shock waves on the sidewalls of the test section. The agreement between the experimental and calculated results regarding the position of the cellular patterns on the smoked plate record indicated that the position of detonation initiation in high speed flows is shifted downstream due to the flow velocity.  相似文献   

11.
This paper discusses the Nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation waves and the Ignition and Growth reactive flow model of shock initiation and detonation wave propagation in solid explosives. The NEZND theory identified the nonequilibrium excitation processes that precede and follow the exothermic decomposition of a large high explosive molecule into several small reaction product molecules. The thermal energy deposited by the leading shock wave must be distributed to the vibrational modes of the explosive molecule before chemical reactions can occur. The induction time for the onset of the initial endothermic reactions can be calculated using high pressure-high temperature transition state theory. Since the chemical energy is released well behind the leading shock front of a detonation wave, a physical mechanism is required for this chemical energy to reinforce the leading shock front and maintain its overall constant velocity. This mechanism is the amplification of pressure wavelets in the reaction zone by the process of de-excitation of the initially highly vibrationally excited reaction product molecules. This process leads to the development of the three-dimensional structure of detonation waves observed for all explosives. For practical predictions of shock initiation and detonation in hydrodynamic codes, phenomenological reactive flow models have been developed. The Ignition and Growth reactive flow model of shock initiation and detonation in solid explosives has been very successful in describing the overall flow measured by embedded gauges and laser interferometry. This reactive flow model uses pressure and compression dependent reaction rates, because time-resolved experimental temperature data is not yet available. Since all chemical reaction rates are ultimately controlled by temperature, the next generation of reactive flow models will use temperature dependent reaction rates. Progress on a statistical hot spot ignition and growth reactive flow model with multistep Arrhenius chemical reaction pathways is discussed. The text was submitted by the authors in English.  相似文献   

12.
刘强  罗振兵  邓雄  杨升科  蒋浩 《物理学报》2017,66(23):234701-234701
为了探究超声速边界层流动稳定性及其转捩控制机理,提出基于合成冷/热射流的边界层速度-温度耦合控制方法,并通过数值模拟研究了Ma=4.5超声速平板边界层不稳定波的传播,采用线性稳定性理论中的时间模式分析了壁面吹吸、射流温度、扰动频率、扰动振幅等对不稳定波控制效果的影响.结果表明:无射流控制时,边界层内同时存在不稳定的第一模态扰动波和第二模态扰动波,且二维波形式的第二模态占主导地位;壁面吹吸作用下,仅出现更加不稳定的第二模态,第一模态被抑制;速度-温度耦合控制下,射流温度对扰动模态的不稳定区域大小及扰动增长率影响显著,射流温度与来流温度不同时,温度的脉动使得流动转捩为湍流的速度加快,边界层速度型更加饱满,抗干扰能力增强,流动稳定性提高;高频的吹吸扰动对流场的控制效果优于低频扰动,扰动频率超过400 Hz时,第二模态扰动波时间增长率降低,扰动分量对边界层速度剖面和温度剖面的修正加快,第二模态更加稳定;扰动振幅减小为主流速度的1%时,仅出现时间增长率较小的第二模态,控制效果较好,进一步减小时,第一模态重新出现,并且波数范围与第二模态先重合后分离,对应的时间增长率先增加后减小.研究结果为边界层转捩控制技术提供了新的思路.  相似文献   

13.
An experimental study was conducted to characterize fundamental behavior of detonation waves propagating across an array of reactant jets inside a narrow channel, which simulated an unwrapped rotating detonation engine (RDE) configuration. Several key flow features in an ethylene-oxygen combustor were explored by sending detonation waves across reactant jets entering into cold bounding gas as well as hot combustion products. In this setup, ethylene and oxygen were injected separately into each recessed injector tube, while a total of 15 injectors were used to establish a partially premixed reactant jet array. The results revealed various details of transient flowfield, including a complex detonation wave front leading a curved oblique shock wave, the unsteady production of transverse waves at the edge of the reactant jets, and the onset of suppressed reactant jets re-entering the combustor following a detonation wave passage. The visualization images showed a complex, multidimensional, and highly irregular detonation wave front. It appeared non-uniform mixing of reactant jets lead to dynamic transverse wave structure. The refreshed reactant jets evolving in the wake of the detonation wave were severely distorted, indicating the effect of dynamic flowfield and rapid pressure change. The results suggest that the mixing between the fuel and oxidizer, as well as the mixing between the fresh reactants and the background products, should affect the stability of the RDE combustor processes.  相似文献   

14.
The development of advanced boosted internal combustion engines (ICEs) is constrained by super-knock which is closely associated with end gas autoignition and detonation development. The present study numerically investigates the transient autoignition and detonation development processes under engine-relevant conditions for primary reference fuel (PRF) consisting of n-heptane and isooctane. The effects of PRF composition are systematically examined. By considering the transient local sound speed rather than its initial value, a new non-dimensional parameter is proposed to assess the transient chemical-acoustic interaction and to quantify the autoignition modes. Two detonation sub-modes, normal and over-driven detonation, are identified and the corresponding mechanisms are interpreted. For the over-driven detonation, there exist two developing regimes with weak/strong chemical-acoustic coupling and slow/rapid pressure enhancement. It is found that the maximum pressure caused by autoignition decreases with the blending ratio of isooctane, mainly due to the increase in excitation time. Besides, the strongest detonation induced by hot spot usually occurs within the over-driven detonation sub-regime. Its condition can be well quantified by the new non-dimensional parameter proposed in work and its strength is determined by the ratio of hot spot acoustic time to excitation time. The deviation of transient autoignition front propagation from prediction based on homogenous ignition is mainly attributed to the non-uniform compression effect caused by gradually enhanced pressure wave, while the influence of heat conduction and mass diffusion is negligible. The initial expansion stage dominating the induction period of local autoignition is greatly influenced by the compression of pressure wave. Therefore, the continuously enhanced pressure wave non-uniformly changes the local ignition delay (i.e. reduces its spatial gradient) within the hot spot and thereby accelerates the autoignition front propagation. The relationship among the parameters quantifying the detonation propensity is assessed and interpreted. The present study provides helpful understanding of detonation development under engine conditions.  相似文献   

15.
李洋  贾敏  吴云  李应红  宗豪华  宋慧敏  梁华 《中国物理 B》2016,25(9):95205-095205
Plasma synthetic jet actuator(PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity.In this paper,the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 k Pa to 100 k Pa.The energy consumed by the PSJA is roughly the same for all the pressure levels.Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures.The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases.The peak jet front velocity always appears at the first appearance of a jet,and it decreases gradually with the increase of the air pressure.A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 k Pa.The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures,and it drops with the rising of the air pressure.High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 k Pa.  相似文献   

16.
The physical and mathematical aspects of the theory of a detonation wave containing heavy inert particles are considered. The detonation wave intensity and structure are determined by the relaxation of velocities of both the reactive explosive and the inert admixture. The generalized Jouguet condition is formulated for the velocity of a self-sustained detonation wave. The results of analytical treatment and the model numerical solutions of the problem of the detonation wave velocity selection and the wave structure determination are presented as a function of the ratio of the characteristic times of the heat evolution and the two-component flow velocity relaxation. A limiting case of the fast particle drag is represented by the shock wave structure determined by relaxation of the two-component flow velocity.  相似文献   

17.
于明  刘全 《物理学报》2016,65(2):24702-024702
凝聚炸药爆轰在边界高声速材料约束下传播时,爆轰波会在约束材料界面上产生复杂的折射现象.本文针对凝聚炸药爆轰波在高声速材料界面上的折射现象展开理论和数值模拟分析.首先通过建立在爆轰ZND模型上的改进爆轰波极曲线理论给出爆轰波折射类型,然后发展一种求解爆轰反应流动方程的基于特征理论的二阶单元中心型Lagrange计算方法来数值模拟典型的爆轰波折射过程.从改进爆轰波极曲线理论和二阶Lagrange方法数值模拟给出的结果看出,凝聚炸药爆轰波在高声速材料界面上的折射类型有四种:反射冲击波的正规折射、带束缚前驱波的非正规折射、带双Mach反射的非正规折射、带λ波结构的非正规折射.  相似文献   

18.
激波/边界层干扰对等离子体合成射流的响应特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王宏宇  李军  金迪  代辉  甘甜  吴云 《物理学报》2017,66(8):84705-084705
利用高速纹影系统和数值模拟方法研究了激波/边界层干扰对逆流喷射的等离子体合成射流的响应特性,并揭示了流动控制机理.实验在来流马赫数Ma=3.1的风洞中进行,测试模型采用钝头体和压缩斜坡的组合模型,等离子体合成射流激励器安装在钝头体头部.纹影系统捕捉了放电频率为f=1 kHz和f=3 kHz的激励对附体激波形态和分离激波运动的控制效果.等离子体合成射流使压缩斜坡激波/边界层干扰区域的起始点向下游移动,分离泡尺寸减小,附体激波强度减弱,发生弯曲,再附点移向上游,与此同时分离激波向附体激波逼近.与f=3 kHz激励相比,f=1 kHz激励的射流流量更大,对激波/边界层干扰的影响范围更广、控制效果更好.通过数值模拟,揭示了射流与来流相互作用对下游流场的作用机理:射流与来流相互作用诱导出大尺度旋涡,大尺度旋涡耗散发展增强了近壁面流场的湍流度;压缩斜坡上游近壁面的流场性质发生变化,进而导致了压缩斜坡激波/边界层干扰区域流动的变化.  相似文献   

19.
钱文伟  李伟锋  施浙杭  刘海峰  王辅臣 《物理学报》2016,65(21):214501-214501
采用高速摄像仪对稠密颗粒射流撞击有限尺寸壁面的流动过程进行了实验研究,重点研究了颗粒膜及其表面波纹特征,考察了颗粒粒径、射流速度和固含率等因素对颗粒膜形态和表面波纹的影响.研究结果表明,随着颗粒粒径增大,稠密颗粒撞壁流由颗粒膜向散射模式转变.与液体射流撞壁液膜相比,颗粒膜扩展角较大,射流速度对其影响不显著.稠密颗粒射流撞壁颗粒膜表面波纹存在明显的叠加现象,颗粒膜表面波纹频率比液膜大约低一个数量级.颗粒膜表面波纹主要由射流脉动引起,表面波纹频率与射流脉动频率具有相同的数量级.  相似文献   

20.
旋转爆震燃烧室与涡轮导向器组合实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
旋转爆震涡轮发动机正获得广泛的关注,但旋转爆震燃烧室出口存在着高频的压力波动,压力波动会降低涡轮的工作效率并减小涡轮的工作寿命.基于旋转爆震波的传播特点,开展了旋转爆震燃烧室与涡轮导向器组合结构的实验研究.燃料为H2,由位于燃烧室前端的120个小孔喷入燃烧室;氧化剂为空气,由径向环缝喷入燃烧室.在燃烧室内起爆旋转爆震波后,爆震产物直接流入导向器内.研究结果表明,随当量比的增加,燃烧室内爆震波的传播速度呈先增大后减小的趋势.在导向器出口仍存在与燃烧室内旋转爆震波同主频的振荡压力,但相对于导向器前的振荡压力,出口压力振幅减小了约64%.旋转爆震波传播速度的相对偏差先减小后增大,并且爆震波传播越稳定,其速度损失越小.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号