首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cobaltocenium-containing polyelectrolyte block copolymer nanoparticles were prepared via polymerization-induced self-assembly (PISA) using aqueous dispersion RAFT polymerization. The cationic steric stabilizer was a macromolecular chain-transfer agent (macro-CTA) based on poly(2-cobaltocenium amidoethyl methacrylate chloride) (PCoAEMACl), and the core-forming block was poly(2-hydroxypropyl methacrylate) (PHPMA). Stable cationic spherical nanoparticles were formed in aqueous solution with low dispersity without adding any salts. The chain extension of macro-CTA with HPMA was efficient and fast. The effects of block copolymer compositions, solid content, charge density, and addition of salts were studied. It was found that the degree of polymerization of both the stabilizer PCoAEMACl and the core-forming PHPMA had a strong influence on the size of nanoparticles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 77–83  相似文献   

2.
Polymerization-induced self-assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so-called “high χ–low N” diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub-10 nm surface features. By varying the degree of polymerization of the stabilizer and core-forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre-organization of copolymer chains within sterically-stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution-cast molecularly-dissolved copolymer chains.  相似文献   

3.
Communication: A diblock copolymer consisting of poly(methyl methacrylate) (PMMA) and poly(vinyl acetate) (PVAc) with hydroxyl group at one end is prepared by successive charge transfer polymerization (CTP) under UV irradiation at room temperature using ethanolamine and benzophenone as a binary initiation system. The diblock copolymer PMMA‐b‐PVAc could be selectively hydrolyzed to the block copolymer of poly(methyl methacrylate) and poly(vinyl alcohol) (PVA) using sodium ethoxide as the catalyst. Both copolymers, PMMA‐b‐PVAc and PMMA‐b‐PVA, are characterized in detail by means of FTIR and 1H NMR spectroscopy, and GPC. The effect of the solvent on CTP and the kinetics of CTP are discussed.  相似文献   

4.
A universally significant method,which combines the anionic polymerization with photoinduced charge transfer polymerization,for preparation of soluble star ABC triblock copolymer of ethylene oxide,styrene and methyl methacrylate,was described.The poly(ethylene oxide) (PEO) block was formed by initiation of phenoxy an-ions using p-aminophenol protected by Schiff's base as the parent compound Then the charge transfer system composed of PEO chains with deprotected-amino end groups and benzophenone initiated the polymerization of styrene and methyl metnacrylate sequentially under UV irradiation.The formed star triblock copolymer of styrene,ethylene oxide and methyl methacrylate could be purified by thin-layer chromatography (TLC) and characterized by IR,1H NMR,GPC (gel permeation chromatogrphy) and PGC (pyrolysis gas chromatography).  相似文献   

5.
以含氟醇钾盐(NFHO-K )作为引发剂,通过阴离子活性聚合方法合成了氟烷基封端的聚甲基丙烯酸-2-(二甲氨基)乙酯-block-聚甲基丙烯酸-2-(二乙氨基)乙酯嵌段共聚物(NFHO-PDMA-b-PDEA).该共聚物与一般的含氟嵌段共聚物相比,既具有优良的表面活性,又具有较好的溶解性.通过对溶液表面张力的测定,荧光探针法对溶液临界聚集浓度(cac)的测定和透射电子显微镜(TEM)对共聚物在溶液中胶束形态的研究,发现无机盐对共聚物在水溶液中的聚集行为有明显的影响,并可以增强共聚物的表面活性.  相似文献   

6.
摘要:用化学酶法合成聚己内酯(PCL)和聚N,N-二甲氨基甲基丙烯酸乙酯(PDMAEMA)双亲嵌段聚合物(PCL-b-PDMAEMA)。通过核磁共振(1H NMR),红外光谱仪(FTIR-IR),凝胶渗透色谱(GPC) 对其结构以及分子量与其分子量分布情况进行了表征。对聚合物的溶液性质进行了研究,结果表明:临界胶束浓度(CMC)嵌段聚合物中疏水链段增多有利于形成胶束,表现为CMC降低,并具有较高的热力学稳定性。PDMAEMA是PH和温度敏感材料,研究发现,在不同的温度和pH值条件下表现不同的聚集状态, 当聚合物的pH值降低时平均流体力学直径增加,温度升高平均流体力学直径降低。  相似文献   

7.
It is well‐known that the self‐assembly of AB diblock copolymers in solution can produce various morphologies depending on the relative volume fraction of each block. Recently, polymerization‐induced self‐assembly (PISA) has become widely recognized as a powerful platform technology for the rational design and efficient synthesis of a wide range of block copolymer nano‐objects. In this study, PISA is used to prepare a new thermoresponsive poly(N‐(2‐hydroxypropyl) methacrylamide)‐poly(2‐hydroxypropyl methacrylate) [PHPMAC‐PHPMA] diblock copolymer. Remarkably, TEM, rheology and SAXS studies indicate that a single copolymer composition can form well‐defined spheres (4 °C), worms (22 °C) or vesicles (50 °C) in aqueous solution. Given that the two monomer repeat units have almost identical chemical structures, this system is particularly well‐suited to theoretical analysis. Self‐consistent mean field theory suggests this rich self‐assembly behavior is the result of the greater degree of hydration of the PHPMA block at lower temperature, which is in agreement with variable temperature 1H NMR studies.  相似文献   

8.
It is well‐known that the self‐assembly of AB diblock copolymers in solution can produce various morphologies depending on the relative volume fraction of each block. Recently, polymerization‐induced self‐assembly (PISA) has become widely recognized as a powerful platform technology for the rational design and efficient synthesis of a wide range of block copolymer nano‐objects. In this study, PISA is used to prepare a new thermoresponsive poly(N‐(2‐hydroxypropyl) methacrylamide)‐poly(2‐hydroxypropyl methacrylate) [PHPMAC‐PHPMA] diblock copolymer. Remarkably, TEM, rheology and SAXS studies indicate that a single copolymer composition can form well‐defined spheres (4 °C), worms (22 °C) or vesicles (50 °C) in aqueous solution. Given that the two monomer repeat units have almost identical chemical structures, this system is particularly well‐suited to theoretical analysis. Self‐consistent mean field theory suggests this rich self‐assembly behavior is the result of the greater degree of hydration of the PHPMA block at lower temperature, which is in agreement with variable temperature 1H NMR studies.  相似文献   

9.
Shell cross-linked (SCL) micelles with hydroxy-functional coronas have been constructed in aqueous solution by exploiting the micellar self-assembly behavior of a new thermoresponsive ABC triblock copolymer. This copolymer was prepared via atom transfer radical polymerization in a convenient one-pot synthesis and comprised a thermoresponsive core-forming poly(propylene oxide) (PPO) block, a cross-linkable central poly(2-(dimethylamino)ethyl methacrylate) (DMA) block, and a hydroxy-functional outer block based on poly(glycerol monomethacrylate) (GMA). DMF GPC analysis confirmed a unimodal molecular weight distribution for the PPO-PDMA-PGMA triblock copolymer precursor, with an M(n) of 12 100 and a polydispersity of approximately 1.26. This copolymer dissolved molecularly in aqueous solution at 5 degrees C but formed micelles with hydroxy-functional coronas above a critical micelle temperature of around 12 degrees C, which corresponded closely to the cloud point of the PPO macroinitiator. Cross-linking of the DMA residues using 1,2-bis(2-iodoethoxy)ethane produced SCL micelles that remained intact at 5 degrees C, i.e., below the cloud point of the core-forming PPO block. Dynamic light scattering studies confirmed that the SCL micelle diameter could be varied depending on the temperature employed for cross-linking: smaller, more compact SCL micelles were formed at higher temperatures, as expected. Since cross-linking involved quaternization of the DMA residues, the SCL micelles acquired cationic surface charge as judged by aqueous electrophoresis studies. These cationic SCL micelles were adsorbed onto near-monodisperse anionic silica sols, which were used as a model colloidal substrate. Thermogravimetric analyses indicated a SCL micelle mass loading of 2.5-4.4%, depending on the silica sol diameter and the initial micelle concentration. Aqueous electrophoresis measurements confirmed that surface charge reversal occurred after adsorption of the SCL micelles, and scanning electron microscopy studies revealed a uniform coating of SCL micelles on the silica particles.  相似文献   

10.
pH- and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced selfassembly (PISA). First, reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(diisopropylamino) ethyl methacrylate (DIPEMA) and camptothecin prodrug monomer (CPTM) using biocompatible poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA-CPDB) as the macro RAFT agent is carried out, forming prodrug diblock copolymer PHPMA-P (DIPEMA-co-CPTM). Then, simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation are achieved via RAFT dispersion polymerization of benzyl methacrylate (BzMA) using the PHPMA-P(DIPEMA-co-CPTM) as the macro RAFT agent. The prodrug nanoparticles have three layers, the biocompatible shell (PHPMA), the drug-conjugated middle layer (P(DIPEMA-co-CPTM)) and the PBzMA core, and relatively high concentration (250 mg/g). The prodrug nanoparticles can respond to two stimuli (reductive and acidic conditions). Due to reductive microenvironment of cytosol, the cleavage of the conjugated camptothecin (CPT) within the prodrug nanoparticles could be effectively triggered. pH-Induced hydrophobic/ hydrophilic transition of the PDIPEMA chains results in faster diffusion of GSH into the CPTM units, thus accelerated release of CPT is observed in mild acidic and reductive conditions. Cell viability assays show that the prodrug nanoparticles exhibit well performance of intracellular drug delivery and good anticancer activity.  相似文献   

11.
用酶促聚合和原子转移自由基聚合相结合的"一锅法"合成了聚甲基丙烯酸正丁酯嵌段聚10-羟基癸酸[PBMA-b-P(10-HD)],通过核磁共振(1H NMR)、傅里叶红外光谱(FTIR)和凝胶渗透色谱(GPC)对其结构以及分子量与其分子量分布进行了表征,并通过动态光散射仪(DLS)和原子力显微镜(AFM)对聚合物在水溶液中的性质进行了研究.所得嵌段聚合物纳米粒子呈球形结构,平均直径为135 nm左右.  相似文献   

12.
以正丁基锂为引发剂,阴离子聚合合成了聚丁二烯-聚异戊二烯两嵌段共聚物,然后以2-乙基己酸钴/三乙基铝配位络合催化体系,将其中丁二烯段进行选择性氢化,制备了聚乙烯-聚异戊二烯两嵌段共聚物.对这两种嵌段产物分别用红外光谱、GPC,粘度法、DSC、X-射线衍射和动态力学谱等方法进行了表征.  相似文献   

13.
Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.  相似文献   

14.
Well-defined poly(epsilon-caprolactone) (PCL)/poly(N,N-dimethylamino-2-ethyl methacrylate (PDMAEMA) diblock copolymers were synthesized, and their self-assembly was investigated as micelles both in aqueous solutions and in thin solid deposits. The synthetic approach combines controlled ring opening polymerization (ROP) of epsilon-caprolactone (CL) and atom transfer radical polymerization (ATRP) of N,N-dimethylamino-2-ethyl methacrylate (DMAEMA). Diblock copolymers were prepared by ROP of CL initiated by (Al(OiPr)3), followed by quantitative reaction of the PCL hydroxy end-groups with bromoisobutyryl bromide. The alpha-isopropyloxy omega-2-bromoisobutyrate poly(epsilon-caprolactone) (PCL-Br) obtained was used as a macroinitiator for the ATRP of DMAEMA. The molecular characterization of those diblock copolymers was performed by 1H NMR spectroscopy and gel permeation chromatography (GPC) analysis. The self-assembly of the copolymers into micellar aggregates in aqueous media was followed with dynamic light scattering (DLS), as a function of concentration and the pH. In parallel, the morphology of the solid deposits of those micelles was examined with atomic force microscopy (AFM).  相似文献   

15.
A well‐defined linear ABC triblock copolymer of ethylene oxide (EO), methyl methacrylate (MMA), and styrene (St) was prepared by sequential living anionic and photo‐induced charge transfer polymerization (CTP) using p‐aminophenol as parent compound. In the first step, the diblock copolymer of PEO‐b‐PMMA with a protected aniline end group at PEO end was prepared by initiating of phenoxo‐anion the polymerization of EO and MMA successively, then the diblock copolymer of PEO‐b‐PMMA via deprotection of aniline at PEO end constituted a binary initiation system with benzophenone (BP) by charge transfer complex mechanism to initiate the polymerization of St under UV‐irradiation. The GPC and NMR measurements support that in copolymerization, either in the first or second step, neither homopolymer nor side reactions, such as chain transfer or chain termination, was found. The effect of the concentration of PEOab‐PMMA and St, and the polarity of solvent on the polymerization rate (Rp) of CTP is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 825–833, 1999  相似文献   

16.
We report a facile strategy for incorporating persistent and effective antibacterial property into a widely used polymer, poly(methyl methacrylate)(PMMA), by copolymerizing methyl methacrylate(MMA) with 2-(tert-butylamino)ethyl methacrylate(TA) in one pot via atom transfer radical polymerization(ATRP). The subsequent self-assembly of the resultant poly(methyl methacrylate)-block-poly[(2-tert-butylamino)ethyl methacrylate](PMMA20-b-PTA15) diblock copolymer affords well-defined water-dispersible vesicles, which can be facilely sprayed on the walls in hospitals for effective inhibition and killing of bacteria. 1H-NMR and gel permeation chromatography(GPC) studies confirmed the successful synthesis of welldefined copolymer. Transmission electron microscopy(TEM), atomic force microscopy(AFM) and dynamic light scattering(DLS) studies proved the formation of vesicles with narrow size distribution. DLS studies revealed the excellent stability of vesicles at various temperatures. Antibacterial tests showed effective antibacterial activities of polymer vesicles against both Gram-positive and Gram-negative bacteria. Moreover, this strategy may be extended for preparing a wide range of polymeric materials for facile antibacterial applications in many fields.  相似文献   

17.
2-(Dimethylamino)ethyl methacrylate (DMA) was block copolymerized with methyl methacrylate (MMA) using group transfer polymerization to give four AB diblock, ABA triblock, and BAB triblock copolymers of low polydispersity (Mw/Mn < 1.20). In addition, a near-monodisperse styrene-functionalized DMA-based macromonomer was synthesized via oxyanionic polymerization using a potassium 4-vinylbenzyl alcoholate initiator. These five well-defined, tertiary amine methacrylate-based copolymers were evaluated as steric stabilizers for the synthesis of polystyrene latexes via emulsion and dispersion polymerization. The most efficient steric stabilizers proved to be the DMA-MMA diblock copolymer and the DMA-based macromonomer. The polystyrene latexes were characterized in terms of their particle size and morphology, stabilizer content, surface charge, and surface activity using dynamic light scattering, scanning electron microscopy, 1H NMR spectroscopy, aqueous electrophoresis measurements, and surface tensiometry, respectively. The pH-dependent surface activity exhibited by selected latexes suggests potential applications as stimulus-responsive particulate emulsifiers for oil-in-water emulsions.  相似文献   

18.
Small-angle X-ray scattering (SAXS) is used to characterize the in situ formation of diblock copolymer spheres, worms and vesicles during reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate at 70 °C using a poly(glycerol monomethacrylate) steric stabilizer. 1H NMR spectroscopy indicates more than 99% HPMA conversion within 80 min, while transmission electron microscopy and dynamic light scattering studies are consistent with the final morphology being pure vesicles. Analysis of time-resolved SAXS patterns for this prototypical polymerization-induced self-assembly (PISA) formulation enables the evolution in copolymer morphology, particle diameter, mean aggregation number, solvent volume fraction, surface density of copolymer chains and their mean inter-chain separation distance at the nanoparticle surface to be monitored. Furthermore, the change in vesicle diameter and membrane thickness during the final stages of polymerization supports an ‘inward growth’ mechanism.

In situ small-angle X-ray scattering is used to monitor the formation of diblock copolymer spheres, worms and vesicles during reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate.  相似文献   

19.
两亲性或双亲水性嵌段共聚物在许多领域有重要的应用 ,如用作乳化剂 [1] 、结晶改性剂 [2~ 4 ] 和金属胶体模板物 [5] 等 .借助于活性聚合反应 (阴离子型、阳离子型、基团转移和自由基等 ) ,通过相继加入单体的方式 ,制备出了大量的嵌段共聚物 [6~ 9] ,但这种方法有一定局限性 .对于四氢呋喃与各种 (甲基 )丙烯酸酯的两亲性共聚物的合成 ,由于前者只能进行阳离子型开环聚合 ,而后者则只能进行阴离子聚合和自由基聚合 ,因此难以通过上述方法制得嵌段共聚物 .本文报道了通过 PTHF阳离子型活性链与 PMMA阴离子型活性链偶合反应制备 PMMA…  相似文献   

20.
阴离子聚合法合成PMMA-b-PMTFPS嵌段共聚物   总被引:2,自引:1,他引:2  
以含缩醛官能团的有机锂为引发剂, 将甲基丙烯酸甲酯(MMA)与含氟硅氧烷单体1,3,5-三甲基-1,3,5-三(3',3',3'-三氟丙基)环三硅氧烷(F3)阴离子嵌段共聚, 获得了窄分子量分布的聚甲基丙烯酸甲酯-b-聚[甲基(3,3,3-三氟丙基)硅氧烷](PMMA-b-PMTFPS)嵌段共聚物, 并用GPC, 1H NMR, FTIR和DSC对嵌段共聚物进行了表征. 研究结果表明, 在THF中利用PMMA-OLi对F3进行阴离子开环聚合时, 单体F3浓度的选择对提高嵌段共聚物产率至关重要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号