首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deal with optimal control problems for a non-stationary Stokes system. We study a simultaneous distributed-boundary optimal control problem with distributed observation. We prove the existence and uniqueness of a simultaneous optimal control and we give the first order optimality condition for this problem. We also consider a distributed optimal control problem and a boundary optimal control problem and we obtain estimations between the simultaneous optimal control and the optimal controls of these last ones. Finally, some regularity results are presented.  相似文献   

2.
This article deals with the approximate controllability problem for fractional evolution equations involving noninstantaneous impulses and state-dependent delay. In order to derive sufficient conditions for the approximate controllability of our problem, we first consider the linear-regulator problem and find the optimal control in the feedback form. By using this optimal control, we develop the approximate controllability of the linear fractional control system. Further, we obtain sufficient conditions for the approximate controllability of the nonlinear problem. In the end, we provide a concrete example to support the applicability of the derived results.  相似文献   

3.
考虑一个带非局部低阶项非线性抛物型方程的时间最优控制问题.首先利用Schauder不动点定理证明了系统的适定性,然后利用Carleman不等式和Kakutani不动点定理证明了容许控制和最优控制的存在性,并且建立了时间最优控制的最大值原理.  相似文献   

4.
This paper presents a computational technique based on the pseudo‐spectral method for the solution of distributed optimal control problem for the viscous Burgers equation. By using pseudo‐spectral method, the problem is converted to a classical optimal control problem governed by a system of ordinary differential equations, which can be solved by well‐developed direct or indirect methods. For solving the resulting optimal control problem, we present an indirect method by deriving and numerically solving the first‐order optimality conditions. Numerical tests involving both unconstrained and constrained control problems are considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we consider an optimal control system described byn-dimensional heat equation with a thermal source. Thus problem is to find an optimal control which puts the system in a finite time T, into a stationary regime and to minimize a general objective function. Here we assume there is no constraints on control. This problem is reduced to a moment problem.We modify the moment problem into one consisting of the minimization of a positive linear functional over a set of Radon measures and we show that there is an optimal measure corresponding to the optimal control. The above optimal measure approximated by a finite combination of atomic measures. This construction gives rise to a finite dimensional linear programming problem, where its solution can be used to determine the optimal combination of atomic measures. Then by using the solution of the above linear programming problem we find a piecewise-constant optimal control function which is an approximate control for the original optimal control problem. Finally we obtain piecewise-constant optimal control for two examples of heat equations with a thermal source in one-dimensional.  相似文献   

6.
主要研究一类受外界持续扰动且状态和控制含不同时滞的线性系统的最优控制,首先通过变量代换,将系统化为控制不含时滞的滞后型微分系统.接着使用最优控制的极大值原理的必要条件,得到含超前和滞后项的两点边值问题.为了得到最优控制律的解析解,引进一个灵敏参数ε,得到两点边值问题序列,通过迭代法,得到最优控制律的解析解.并对外界扰动状态构造降维观测器,来实现最优控制律的物理可实现性.最后实例验证了上述方法的有效性.  相似文献   

7.
In the present work, we study the approximation of a distributed optimal control problem for a linear heat equation with model order reduction based on Proper Orthogonal Decomposition (POD-MOR). We show that snapshot location for control problems is crucial in model reduction. For the determination of the time instances (snapshot locations) we utilize an a-posteriori error control concept which is based on a reformulation of the optimality system of the underlying optimal control problem as a second order in time and fourth order in space elliptic system. Finally, we present a numerical test to illustrate our approach. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In this paper, the optimal control problem is governed by weak coupled parabolic PDEs and involves pointwise state and control constraints. We use measure theory method for solving this problem. In order to use the weak solution of problem, first problem has been transformed into measure form. This problem is reduced to a linear programming problem. Then we obtain an optimal measure which is approximated by a finite combination of atomic measures. We find piecewise-constant optimal control functions which are an approximate control for the original optimal control problem.  相似文献   

9.
In the paper, we consider the bioprocess system optimal control problem. Generally speaking, it is very difficult to solve this problem analytically. To obtain the numerical solution, the problem is transformed into a parameter optimization problem with some variable bounds, which can be efficiently solved using any conventional optimization algorithms, e.g. the improved Broyden–Fletcher–Goldfarb–Shanno algorithm. However, in spite of the improved Broyden–Fletcher–Goldfarb–Shanno algorithm is very efficient for local search, the solution obtained is usually a local extremum for non-convex optimal control problems. In order to escape from the local extremum, we develop a novel stochastic search method. By performing a large amount of numerical experiments, we find that the novel stochastic search method is excellent in exploration, while bad in exploitation. In order to improve the exploitation, we propose a hybrid numerical optimization algorithm to solve the problem based on the novel stochastic search method and the improved Broyden–Fletcher–Goldfarb–Shanno algorithm. Convergence results indicate that any global optimal solution of the approximate problem is also a global optimal solution of the original problem. Finally, two bioprocess system optimal control problems illustrate that the hybrid numerical optimization algorithm proposed by us is low time-consuming and obtains a better cost function value than the existing approaches.  相似文献   

10.
Patrick Mehlitz 《Optimization》2016,65(6):1203-1227
This article is dedicated to the study of bilevel optimal control problems equipped with a fully convex lower level of special structure. In order to construct necessary optimality conditions, we consider a general bilevel programming problem in Banach spaces possessing operator constraints, which is a generalization of the original bilevel optimal control problem. We derive necessary optimality conditions for the latter problem using the lower level optimal value function, ideas from DC-programming and partial penalization. Afterwards, we apply our results to the original optimal control problem to obtain necessary optimality conditions of Pontryagin-type. Along the way, we derive a handy formula, which might be used to compute the subdifferential of the optimal value function which corresponds to the lower level parametric optimal control problem.  相似文献   

11.
First hitting criteria of a system are to initially achieve some performance indeces of the target state set. This paper primarily investigates the optimal control problem of the uncertain second‐order circuit based on first hitting criteria. First, considering time efficiency and different from the ordinary expected utility criterion over an infinite time horizon, two first hitting criteria which are reliability index and reliable time criteria are innovatively proposed. Second, assuming the circuit output voltage as an uncertain variable when the historical data is lacking, we better model the real circuit system with the uncertain second‐order differential equation which is essentially the uncertain fractional‐order differential equation. Then, based on the first hitting time theorem of the uncertain fractional‐order differential equation, the distribution function of the first hitting time under the second‐order circuit system is proposed and the uncertain second‐order circuit optimal control model (reliability index and reliable time‐based model) is transformed into corresponding crisp optimal problem. Lastly, analytic expressions of the optimal control for the reliability index model are obtained. Meanwhile, sufficient condition and guidance for parameters for the optimal solution of the reliable time‐based model are derived, and corresponding numerical examples are also given to demonstrate the fluctuation of our optimal solution for different parameters.  相似文献   

12.
We examine an optimal impulse control problem of a stochastic system whose state follows a geometric Brownian motion. We suppose that, when an agent intervenes in the system, it requires costs consisting of a quadratic form of the system state. Besides the intervention costs, running costs are continuously incurred to the system, and they are also of a quadratic form. Our objective is to find an optimal impulse control of minimizing the expected total discounted sum of the intervention costs and running costs incurred over the infinite time horizon. In order to solve this problem, we formulate it as a stochastic impulse control problem, which is approached via quasi-variational inequalities (QVI). Under a suitable set of sufficient conditions on the given problem parameters, we prove the existence of an optimal impulse control such that, whenever the system state reaches a certain level, the agent intervenes in the system. Consequently it instantaneously reduces to another level.  相似文献   

13.

In a wide range of applications it is desirable to optimally control a dynamical system with respect to concurrent, potentially competing goals. This gives rise to a multiobjective optimal control problem where, instead of computing a single optimal solution, the set of optimal compromises, the so-called Pareto set, has to be approximated. When the problem under consideration is described by a partial differential equation (PDE), as is the case for fluid flow, the computational cost rapidly increases and makes its direct treatment infeasible. Reduced order modeling is a very popular method to reduce the computational cost, in particular in a multi query context such as uncertainty quantification, parameter estimation or optimization. In this article, we show how to combine reduced order modeling and multiobjective optimal control techniques in order to efficiently solve multiobjective optimal control problems constrained by PDEs. We consider a global, derivative free optimization method as well as a local, gradient-based approach for which the optimality system is derived in two different ways. The methods are compared with regard to the solution quality as well as the computational effort and they are illustrated using the example of the flow around a cylinder and a backward-facing-step channel flow.

  相似文献   

14.
In this paper, we use measure theory for considering asymptotically stable of an autonomous system [1] of first order nonlinear ordinary differential equations(ODE’s). First, we define a nonlinear infinite-horizon optimal control problem related to the ODE. Then, by a suitable change of variable, we transform the problem to a finite-horizon nonlinear optimal control problem. Then, the problem is modified into one consisting of the minimization of a linear functional over a set of positive Radon measures. The optimal measure is approximated by a finite combination of atomic measures and the problem converted to a finite-dimensional linear programming problem. The solution to this linear programming problem is used to find a piecewise-constant control, and by using the approximated control signals, we obtain the approximate trajectories and the error functional related to it. Finally the approximated trajectories and error functional is used to for considering asymptotically stable of the original problem.  相似文献   

15.
In this paper we prove the convergence of an iterative scheme of fractional steps type for a non-homogeneous Cauchy-Neumann boundary optimal control problem governed by non-linear phase-field system, when the boundary control is dependent both on time and spatial variables. Moreover, necessary optimality conditions are established for the approximating process. The advantage of such approach leads to a numerical algorithm in order to approximate the original optimal control problem.  相似文献   

16.
The goal of planning a horizontal well path is to obtain a trajectory that arrives at a given target subject to various constraints. In this paper, the optimal control problem subject to a nonlinear multistage dynamical system (NMDS) for horizontal well paths is investigated. Some properties of the multistage system are proved. In order to derive the optimality conditions, we transform the optimal control problem into one with control constraints and inequality-constrained trajectories by defining some functions. The properties of these functions are then discussed and optimality conditions for optimal control problem are also given. Finally, an improved simplex method is developed and applied to the optimal design for well Ci-16-Cp146 in Oil Field of Liaohe, and the numerical results illustrate the validity of both the model and the algorithm.  相似文献   

17.
Sina Ober-Blöbaum 《PAMM》2016,16(1):821-822
Higher order variational integrators are analyzed and applied to optimal control problems posed with mechanical systems. First, we derive two different kinds of high order variational integrators based on different dimensions of the underlying approximation space. While the first well-known integrator is equivalent to a symplectic partitioned Runge-Kutta method, the second integrator, denoted as symplectic Galerkin integrator, yields a method which in general, cannot be written as a standard symplectic Runge-Kutta scheme [1]. Furthermore, we use these integrators for the discretization of optimal control problems. By analyzing the adjoint systems of the optimal control problem and its discretized counterpart, we prove that for these particular integrators optimization and discretization commute [2]. This property guarantees that the accuracy is preserved for the adjoint system which is also referred to as the Covector Mapping Principle. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This work is concerned with numerical schemes for stochastic optimal control problems (SOCPs) by means of forward backward stochastic differential equations (FBSDEs). We first convert the stochastic optimal control problem into an equivalent stochastic optimality system of FBSDEs. Then we design an efficient second order FBSDE solver and an quasi-Newton type optimization solver for the resulting system. It is noticed that our approach admits the second order rate of convergence even when the state equation is approximated by the Euler scheme. Several numerical examples are presented to illustrate the effectiveness and the accuracy of the proposed numerical schemes.  相似文献   

19.
讨论了一类与年龄相关的非线性种群扩散系统的最优控制问题,其生死率依赖于个体年龄和加权总规模.利用不动点原理确立了系统的适定性,借助于法锥概念得到了控制问题最优解存在的必要条件.这些结果可为种群扩散系统最优控制问题的实际研究提供理论基础.  相似文献   

20.
In this paper, we establish the existence of the optimal control for an optimal control problem where the state of the system is defined by a variational inequality problem with monotone type mappings. Moreover, as an application, we get several existence results of an optimal control for the optimal control problem where the system is defined by a quasilinear elliptic variational inequality problem with an obstacle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号