首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tightly linked! A linear array of complementary hydrogen bonds forms between two 2‐ureidopyrimidin‐4(1H)‐one rings attached to the upper rims of facing 1,3‐alternate calix[4]arenes (shown schematically). The strength of the binding (Kass>106 M −1 in chloroform) and the efficiency of the self‐assembly open up interesting perspectives in the design of highly ordered multicomponent cages.  相似文献   

2.
Cyclic arylene ethynylene hexamer 1 , composed of alternating 2,7‐anthrylene ethynylene units and meta‐phenylene ethynylene units, was synthesized. It shows C3 symmetry and possesses a flat and rigid conformation with a large equilateral triangle‐like cavity. Macrocycle 1 self‐associates through π–π stacking interactions between the anthracene‐containing macrocyclic aromatic cores with indefinite‐association constant KE=6980 m ?1 in CDCl3 at 303 K. Macrocycle 1 also self‐assembles into π‐stacked nanofibers in the drop‐cast film.  相似文献   

3.
刘鹏a  李曦a 潘牧b 《中国化学》2008,26(7):1215-1218
本文通过热化学方法设计了PDDA滴定质子交换膜,并研究了高分子的静电自组装过程。通过非线性拟合数据分析,求出了自组装过程的焓变( )和结合常数(K)。根据该反应过程中的热力学参数,可知自组装过程是“焓驱动”反应。热量的放出代表着能量的降低,有利于反应的发生;而自由度的减小不利于反应的发生。对于每个离子键的形成,单分子DDA的焓变超过了PDDA,这是因为小分子能够更加自由地结合到膜上,而高分子PDDA有一定的位阻效应。  相似文献   

4.
Novel macrocyclic receptors that bind electron‐donor aromatic substrates through π‐stacking donor–acceptor interactions are obtained by cycloimidisation of an amine‐functionalised aryl ether sulfone with pyromellitic and 1,4,5,8‐naphthalenetetracarboxylic dianhydrides. These macrocycles can form complexes with a wide variety of π‐donor substrates, including tetrathiafulvalene, naphthalene, anthracene, pyrene, perylene and functional derivatives of these polycyclic hydrocarbons. The resulting supramolecular assemblies range from simple 1:1 complexes to [2]‐ and [3]pseudorotaxanes and even (as a result of crystallographic disorder) an apparent polyrotaxane. Direct five‐component self‐assembly of a metal‐centred [3]pseudorotaxane is also observed on complexation of a macrocyclic ether imide with 8‐hydroxyquinoline in the presence of palladium(II) ions. Binding studies in solution were carried out by using 1H NMR and UV/Vis spectroscopy, and the stoichiometries of binding were confirmed by Job plots based on the charge‐transfer absorption bands. The highest association constants were found for strong π‐donor guests with large surface areas, notably perylene and 1‐hydroxypyrene, for which Ka values of 1.4×103 and 2.3×103 M ?1, respectively, were found. Single‐crystal X‐ray analyses of the receptors and their derived complexes reveal large induced‐fit distortions of the macrocyclic frameworks as a result of complexation. These structures provide compelling evidence for the existence of strong attractive forces between the electronically complementary aromatic π systems of host and guest.  相似文献   

5.
The self‐assembly of salt nanocrystals from chemical reactions inside liquid helium is reported for the first time. Reaction is initiated by an electron impacting a helium nanodroplet containing sodium atoms and SF6 molecules, leading to preferential production of energetically favorable structures based on the unit cell of crystalline NaF. These favorable structures are observed as magic number ions (anomalously intense peaks) in mass spectra and are seen in both cationic and anionic channels in mass spectra, for example, (NaF)nNa+ and (NaF)nF?. In the case of anions the self‐assembly is not directly initiated by electrons: the dominant process involves resonant electron‐induced production of metastable electronically excited He? anions, which then initiate anionic chemistry by electron transfer.  相似文献   

6.
This paper presents results from a series of pulsed field gradient (PFG) NMR studies on lipophilic guanosine nucleosides that undergo cation‐templated assembly in organic solvents. The use of PFG‐NMR to measure diffusion coefficients for the different aggregates allowed us to observe the influences of cation, solvent and anion on the self‐assembly process. Three case studies are presented. In the first study, diffusion NMR confirmed formation of a hexadecameric G‐quadruplex [G 1 ]16 ? 4 K+ ? 4 pic? in CD3CN. Furthermore, hexadecamer formation from 5′‐TBDMS‐2′,3′‐isopropylidene G 1 and K+ picrate was shown to be a cooperative process in CD3CN. In the second study, diffusion NMR studies on 5′‐(3,5‐bis(methoxy)benzoyl)‐2′,3′‐isopropylidene G 4 showed that hierarchical self‐association of G8‐octamers is controlled by the K+ cation. Evidence for formation of both discrete G8‐octamers and G16‐hexadecamers in CD2Cl2 was obtained. The position of this octamer–hexadecamer equilibrium was shown to depend on the K+ concentration. In the third case, diffusion NMR was used to determine the size of a guanosine self‐assembly where NMR signal integration was ambiguous. Thus, both diffusion NMR and ESI‐MS show that 5′‐O‐acetyl‐2′,3′‐O‐isopropylidene G 7 and Na+ picrate form a doubly charged octamer [G 7 ]8 ? 2 Na+ ? 2 pic? 9 in CD2Cl2. The anion's role in stabilizing this particular complex is discussed. In all three cases the information gained from the diffusion NMR technique enabled us to better understand the self‐assembly processes, especially regarding the roles of cation, anion and solvent.  相似文献   

7.
The self‐assembly of triazole amphiphiles was examined in solution, the solid state, and in bilayer membranes. Single‐crystal X‐ray diffraction experiments show that stacked protonated triazole quartets (T4) are stabilized by multiple strong interactions with two anions. Hydrogen bonding/ion pairing of the anions are combined with anion–π recognition to produce columnar architectures. In bilayer membranes, low transport activity is observed when the T4 channels are operated as H+/X? translocators, but higher transport activity is observed for X? in the presence of the K+‐carrier valinomycin. These self‐assembled superstructures, presenting intriguing structural behaviors such as directionality, and strong anion encapsulation by hydrogen bonding supported by vicinal anion–π interactions can serve as artificial supramolecular channels for transporting anions across lipid bilayer membranes.  相似文献   

8.
A diverse range of dinuclear double‐stranded helicates in which the ligand strand is built up by using hydrogen‐bonding has been synthesized. The helicates, formulated as [Co2(L)2(L‐H)2X2], readily self‐assemble from a mixture of a suitable pyridine–alcohol compound (L; for example, 6‐methylpyridine‐2‐methanol, 1 ), and a CoX2 salt in the presence of base. Nine such helicates have been characterized by X‐ray crystallography. For helicates derived from the same pyridine–alcohol precursor, a remarkable regularity was found for both the molecular structure and the crystal packing arrangements, regardless of the nature of the ancillary ligand (X). A notable exception was observed in the solid‐state structure of [Co2( 1 )2( 1 ‐H)2(NCS)2] for which intermolecular nonbonded contacts between the sulfur atoms (S???S=3.21 Å) lead to the formation of 1D chains. Helicates derived from (R)‐6‐methylpyridine‐2‐methanol ( 2 ) are soluble in solvents such as CH3CN and CH2Cl2, and their self‐assembly could be monitored in solution by 1H NMR, UV/Vis, and CD titrations. No intermediate complexes were observed to form in a significant concentration at any point throughout these titrations. The global thermodynamic stability constant of [Co2( 2 )2( 2 ‐H)2(NO3)2] was calculated from spectrophotometric data to be logβ=8.9(8). The stereoisomerism of these helicates was studied in some detail and the self‐assembly process was found to be highly stereoselective. The chirality of the ligand precursors can control the absolute configuration of the metal centers and thus the overall helicity of the dinuclear assemblies. Furthermore, the enantiomers of rac‐6‐methylpyridine‐2‐methanol ( 3 ) undergo a self‐recognition process to form exclusively homochiral helicates in which the four pyridine–alcohol units possess the same chirality.  相似文献   

9.
The new N‐confused porphyrin (NCP) derivatives, meso‐unsubstituted β‐alkyl‐3‐oxo N‐confused porphyrin (3‐oxo‐NCP) and related macrocycles, were synthesized from appropriate pyrrolic precursors by a [3+1]‐type condensation reaction. 3‐Oxo‐NCP forms a self‐assembled dimer in dichloromethane that is stabilized by complementary hydrogen‐bonding interactions arising from the peripheral amide‐like moieties. The protonated form of 3‐oxo‐NCP was observed to bind halide anions (F?, Cl?) through the outer NH and the inner pyrrolic NH groups, thus affording a dimer in dichloromethane. The structure of the chloride‐bridged dimer in the solid state was determined by X‐ray diffraction analysis.  相似文献   

10.
Pseudo‐octahedral MII6L4 capsules result from the subcomponent self‐assembly of 2‐formylphenanthroline, threefold‐symmetric triamines, and octahedral metal ions. Whereas neutral tetrahedral guests and most of the anions investigated were observed to bind within the central cavity, tetraphenylborate anions bound on the outside, with one phenyl ring pointing into the cavity. This binding configuration is promoted by the complementary arrangement of the phenyl rings of the intercalated guest between the phenanthroline units of the host. The peripherally bound, rapidly exchanging tetraphenylborate anions were found to template an otherwise inaccessible capsular structure in a manner usually associated with slow‐exchanging, centrally bound agents. Once formed, this cage was able to bind guests in its central cavity.  相似文献   

11.
Hexagonal shape‐persistent macrocycles (SPMs) consisting of three pyridine and three phenol rings linked with acetylene bonds were developed as a preorganized host for saccharide recognition by push–pull‐type hydrogen bonding. Three tert‐butyl or 2,4,6‐triisopropylphenyl substituents were introduced on the host to suppress self‐aggregation by steric hindrance. In spite of the simple architecture, association constants Ka of the host with alkyl glycoside guests reached the order of 106 m ?1 on the basis of UV/Vis titration experiments. This glycoside recognition was much stronger than that in the cases of acyclic equivalent hosts because of the entropic advantage brought by preorganization of the hydrogen‐bonding sites. Solid–liquid extraction and liquid–liquid transport through a liquid membrane were demonstrated by using native saccharides, and much preference to mannose was observed.  相似文献   

12.
Traditional micelle self‐assembly is driven by the association of hydrophobic segments of amphiphilic molecules forming distinctive core–shell nanostructures in water. Here we report a surprising chaotropic‐anion‐induced micellization of cationic ammonium‐containing block copolymers. The resulting micelle nanoparticle consists of a large number of ion pairs (≈60 000) in each hydrophobic core. Unlike chaotropic anions (e.g. ClO4?), kosmotropic anions (e.g. SO42?) were not able to induce micelle formation. A positive cooperativity was observed during micellization, for which only a three‐fold increase in ClO4? concentration was necessary for micelle formation, similar to our previously reported ultra‐pH‐responsive behavior. This unique ion‐pair‐containing micelle provides a useful model system to study the complex interplay of noncovalent interactions (e.g. electrostatic, van der Waals, and hydrophobic forces) during micelle self‐assembly.  相似文献   

13.
The synthesis and self‐assembly behavior of porphyrin–polypyridyl ruthenium(II) hybrid, which consists of a flexible alkyl chain attached with two conjugated moieties is described. The electronic absorption spectrum and emission spectra show that the [C8‐TPP‐(ip)Ru(phen)2](ClO4)2, abbreviated as (C8ip)TPPC has optical properties. Scanning tunneling microscopy (STM) studies found that the π–π interaction and metal–ligand interaction allow (C8ip)TPPC to form self‐assembled structure and have an edge‐on orientation on the highly oriented pyrolytic graphite (HOPG) surface. The multidentate structure in (C8ip)TPPC molecules act as linkers between the molecules and form metal–ligand coordination, which forces the assembly process in the direction of stable columnar arrays. In addition, although the sample was stored for two months in ambient conditions, STM experiments showed that the order of (C8ip)TPPC self‐assembly only slightly decreased which indicates that the self‐assembled monolayer is stable. This work demonstrates that introducing a metal‐ligand in the porphyrin‐polypyridyl compound is a useful strategy to obtain novel surface assemblies.  相似文献   

14.
The inclusion of the fluorescent organic dye, ethyl 3‐(7‐hydroxy‐2‐oxo‐2H‐chromen‐3‐yl)‐3‐oxopropanoate ( 1 ) by the host β‐cyclodextrin (β‐CD), and its response toward mercuric ions (Hg2+), was studied by UV/Vis, fluorescence, and 1H NMR spectroscopic analyses, mass spectrometry and molecular modeling studies. 1H NMR measurements together with molecular modeling studies for dye 1 demonstrate that it exhibits two tautomeric forms (keto and enol); however, when the dye is included into the β‐CD cavity, the enol form predominates. Moreover, by using spectroscopic and spectrometry techniques, a 1:1 stoichiometry was determined for the complexes formed between dye 1 (enol form) and β‐CD, with a binding constant (Kb1=1.8×104 m ?1) and for the dye 1 (keto form)‐Hg2+ (Kb2=2.3×103 m ?1). Interestingly, in the presence of 1 –β‐CD complex and mercuric ions, a ternary supramolecular system (Hg– 1 –β‐CD complex) was established, with a 1:1:1 stoichiometry and a Kb3 value of 4.3×103 m ?1, with the keto form of the dye being the only one present in this assembly. The three‐component system provides a starting point for the development of novel and directed supramolecular assemblies.  相似文献   

15.
A series of metal–organic frameworks based on a flexible, highly charged Bpybc ligand, namely 1? Mn?OH?, 2? Mn?SO42?, 3? Mn?bdc2?, 4? Eu?SO42? (H2BpybcCl2=1,1′‐bis(4‐carboxybenzyl)‐4,4′‐bipyridinium dichloride, H2bdc=1,4‐benzenedicarboxylic acid) have been obtained by a self‐assembly process. Single‐crystal X‐ray‐diffraction analysis revealed that all of these compounds contained the same n‐fold 2D→3D Borromean‐entangled topology with irregular butterfly‐like pore channels that were parallel to the Borromean sheets. These structures were highly tolerant towards various metal ions (from divalent transition metals to trivalent lanthanide ions) and anion species (from small inorganic anions to bulky organic anions), which demonstrated the superstability of these Borromean linkages. This non‐interpenetrated entanglement represents a new way of increasing the stability of the porous frameworks. The introduction of bipyridinium molecules into the porous frameworks led to the formation of cationic surface, which showed high affinities to methanol and water vapor. The distinct adsorption and desorption isotherms of methanol vapor in four complexes revealed that the accommodated anion species (of different size, shape, and location) provided a unique platform to tune the environment of the pore space. Measurements of the adsorption of various organic vapors onto framework 1? Mn?OH? further revealed that these pores have a high adsorption selectivity towards molecules with different sizes, polarities, or π‐conjugated structures.  相似文献   

16.
Magnetic and fluorescent assemblies of iron‐oxide nanoparticles (NPs) were constructed by threading a viologen‐based ditopic ligand, DPV2+, into the cavity of cucurbituril (CB[7]) macrocycles adsorbed on the surface of the NPs. Evidence for the formation of 1:2 inclusion complexes that involve DPV2+ and two CB[7] macrocycles was first obtained in solution by 1H NMR and emission spectroscopy. DPV2+ was found to induce self‐assembly of nanoparticle arrays (DPV2+?CB[7]NPs) by bridging CB[7] molecules on different NPs. The resulting viologen‐crosslinked iron‐oxide nanoparticles exhibited increased saturation magnetization and emission properties. This facile supramolecular approach to NP self‐assembly provides a platform for the synthesis of smart and innovative materials that can achieve a high degree of functionality and complexity and that are needed for a wide range of applications.  相似文献   

17.
The self‐assembly of eight PdII cations and sixteen phenanthrene‐derived bridging ligands with 60° bite angles yielded a novel M8L16 metallosupramolecular architecture composed of two interlocked D4h‐symmetric barrel‐shaped containers. Mass spectrometry, NMR spectroscopy, and X‐ray analysis revealed this self‐assembled structure to be a very large “Hopf link” catenane featuring channel‐like cavities, which are occupied by NO3 anions. The importance of the anions as catenation templates became imminent when we observed the nitrate‐triggered structural rearrangement of a mixture of M3L6 and M4L8 assemblies formed in the presence of BF4 anions into the same interlocked molecule. Furthermore, the densely packed structure of the M8L16 catenane was exploited in the preparation of a hexyloxy‐functionalized analogue, which further self‐assembled into vesicle‐like aggregates in a reversible manner.  相似文献   

18.
Currently, main‐group metal cations are totally neglected as the structure‐building blocks for the self‐assembly of supramolecular coordination metallocages due to the lack of directional bonding. However, here we show that a common Arrhenius acid–base neutralization allows the alkaline‐earth metal cations to act as charged binders, easily connecting two or more highly directional anionic transition‐metal‐based metalloligands to coordination polymers. With a metal salt such as K+PF6? added during the neutralization, the main‐group metal‐connected skeleton can be templated by the largest yet reported ionic‐aggregate anion, K2(PF6)3?, formed from KPF6 in solution, into molecular metallocages, encapsulating the ion. Crystal‐structure details, DFT‐calculation results, and controlled‐release behavior support the presence of K2(PF6)3? as a guest in the cage. Upon removal of PF6? ions, the cage stays intact. Other ions like BF4? can be put back in.  相似文献   

19.
Five new ZnII complexes, namely [Zn3(L)6] ( 1 ), [Zn2(Cl)2(L)2(py)2] ( 2 ), [Zn2(Br)2(L)2(py)2] ( 3 ), [Zn(L)2(py)] ( 4 ), and [Zn2(OAc)2(L)2(py)2] ( 5 ), were prepared by the solvothermal reaction of ZnX2 (X?=Cl?, Br?, F?, and OAc?) salts with a 8‐hydroxyquinolinate ligand (HL) that contained a trifluorophenyl group. All of the complexes were characterized by elemental analysis, IR spectroscopy, and powder and single‐crystal X‐ray crystallography. The building blocks exhibited unprecedented structural diversification and their self‐assembly afforded one mononuclear, three binuclear, and one trinuclear ZnII structures in response to different anions and solvent systems. Complexes 1 – 5 featured four types of supramolecular network controlled by non‐covalent interactions, such as π???π‐stacking, C? H???π, hydrogen‐bonding, and halogen‐related interactions. Investigation of their photoluminescence properties exhibited disparate emission wavelengths, lifetimes, and quantum yields in the solid state.  相似文献   

20.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号