首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
The aim of this article is to present an overview about the preparation method and physical properties of a new hybrid system consisting of single-walled carbon nanotubes (SWNTs) wrapped by conjugated polymers. The technique firstly demonstrated in 2007 has attracted great interest because of the high purity of the resulting semiconducting SWNTs and the possibility of applying them in electronic devices. Here, we will review recent progresses regarding the preparation of these nano-hybrids, their photophysical properties and application in field-effect transistors and photovoltaic devices.  相似文献   

2.
The spectral-luminescence properties of poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) films doped with potassium iodide are investigated. It is found that the addition of potassium iodide at concentrations of 0.1–1% leads to a drop in the degree of ordering of the PFO films and decreases the fluorescence intensity and lifetime of the polymer. The kinetics of photoluminescence of PFO–KI films is studied in nano-, micro-, and millisecond time bands. Analysis of the experimental data on long-term luminescence using the percolation model showed that the addition of potassium iodide to the polymer increases the degree of disordering of the film. Investigations of the effect of an external magnetic field on the PFO luminescence over a wide time range indicate a complex character of the time dependence of the magnetic effect. The changes in both the magnitude and sign of the magnetic effect g(B) are observed over the entire measured time range.  相似文献   

3.
一种新型卟啉侧链聚合物的飞秒荧光动力学   总被引:3,自引:3,他引:0  
研究了一种新型的卟啉侧链聚合物丙烯腈丙烯酸卟啉酯共聚物{poly[porphyrin acrylate-acrylonitrile](p[(por)A-AN]}的链间和链内的卟啉分子的相互作用对聚合物薄膜发光性质的影响。通过采用飞秒荧光光谱技术测量了p[(por)A-AN]薄膜的荧光动力学过程。测量结果表明:纯p[(por)A-AN]薄膜(~450ps)显示出了比混合物薄膜p[(por)A-AN]/polystyrene(PSE)(~1.3 ns)快得多的荧光弛豫过程。而p[(por)A-AN]/PSE混合物薄膜显示出较纯p[(por)A-AN]薄膜增强的荧光效率。增加p[(por)A-AN]分子内卟啉侧链基团的浓度导致纯p[(por)A-AN]薄膜和p[(por)A-AN]/PSE混合物薄膜的荧光效率的增强和寿命(由近26~36 ps)的增加。分子间和分子内卟啉侧链基团之间的无辐射能量转移和分子内卟啉侧链基团的旋转运动在p[(por)A-AN]的荧光动力学过程中起着重要的作用。  相似文献   

4.
A noble self-dopable conjugated polybetaine, poly[2-ethynyl-N-(4-sulfobutyl)pyridinium betaine] (PESPB) was synthesized by the activated polymerization of 2-ethynylpyridine with 1,4-butanesultone without any additional initiator or catalyst. This polymerization proceeded at the condition of high temperature (130 °C). The polymer yield and inherent viscosity were 82% and 0.13 dl/g, respectively. The chemical structure of PESPB was identified by various instrumental methods to have a conjugated ionic polymer bearing the sulfobetaine moieties. This poly(sulfobetaine) was found to be more soluble in salt solution than in salt-free solution. The photoluminescence peak is located at 530 nm corresponding to the photon energy of 2.34 eV. The photoluminescence intensity was increased as the temperature is increased. At 1 kHz and room temperature, the dielectric constant and electrical conductivity of PESPB were 5.7 and 3.5 × 10−9 S/cm, respectively.  相似文献   

5.
The fabrication of the green polymer light-emitting diodes based on emission from the phosphorescent molecule fac tris(2-phenylpyridine) iridium doped into a polymeric binary-host is reported. The main host used in the PLEDs was a non-conjugated polymer, poly(9-vinyl carbazole) (PVK). To realize the balanced transport of the holes and the electrons, a conjugated polymer, poly(9,9-dioctylfluorene) (PFO) was used as the assisting host. According to the experimental results, we found that the PLEDs can achieve the balance in charge transport and the recombination zone is still confined in the emissive layer by controlling the ratio of PVK to PFO. The luminous efficiency is enhanced by >40% while the external quantum efficiency can be increased by >38% in a polymeric binary-host system as compared to those of traditional device configuration, which is attributed to the balanced transport of the charged carrier.  相似文献   

6.
In this article, we describe a new method to prepare a ZnO and conjugated polymer nanocomposite and its application in bulk-heterojunction solar cells. The composite was composed of zinc oxide (ZnO) and poly(phenylene vinylene)/poly(vinyl alcohol) (PPV/PVA). For the preparation, the composite was prepared first through the complex reaction between Zn2+ ion and –OH of the PVA–PPV precursor by simply mixing zinc salts and a PVA–PPV precursor aqueous solution at 70 °C. By addition of a concentrated aqueous ammonia into the system, highly regular Zn(OH)2 nanodots were formed and dispersed in the PVA/PPV precusor mixed solution. The PVA/PPV precursor can well bind Zn2+ ion through complex interaction, so act as a template to direct the distribution of ZnO in the process. The nanocomposite films were finally obtained by solution casting and subsequently treated by heating samples at 160 °C for 6 h. TEM observations showed that ZnO nanodots uniformly dispersed in PVA–PPV mixtures. The resulting nanocomposite films possess a large interfacial area between the electron donor and acceptor of the bulk-heterojunction. Improved charge seperation and collection are evidenced by the large photoluminescence intensity difference between pure PPV and composites films, which result in the increase in both open circuit voltage and short circuit current of the hybrid solar cells.  相似文献   

7.
Hybrid light emitting diodes (LEDs) based on zinc oxide (ZnO) nanorods and polymers (single and blended) were fabricated and characterized. The ZnO nanorods were grown by the chemical bath deposition method at 50°C. Three different LEDs, with blue emitting, orange-red emitting or their blended polymer together with ZnO nanorods, were fabricated and studied. The current–voltage characteristics show good diode behavior with an ideality factor in the range of 2.1 to 2.27 for all three devices. The electroluminescence spectrum (EL) of the blended device has an emission range from 450 nm to 750 nm, due to the intermixing of the blue emission generated by poly(9,9-dioctylfluorene) denoted as PFO with orange-red emission produced by poly(2-methoxy-5(20-ethyl-hexyloxy)-1,4-phenylenevinylene) 1,4-phenylenevinylene) symbolized as MEH PPV combined with the deep-band emission (DBE) of the ZnO nanorods, i.e. it covers the whole visible region and is manifested as white light. The CIE color coordinates showed bluish, orange-red and white emission from the PFO, MEH PPV and blended LEDs with ZnO nanorods, respectively. These results indicate that the choice of the polymer with proper concentration is critical to the emitted color in ZnO nanorods/p-organic polymer LEDs and careful design should be considered to obtain intrinsic white light sources.  相似文献   

8.
Femtosecond time-resolved two-photon photoemission spectroscopy is employed to study the dynamics of an excited state in a thin regioregular poly(3-hexylthiophene) (RR-P3HT) film deposited on a conducting polymer poly(3,4-ethylene-dioxythiophene): poly-(styrenesulfonate) (PEDT:PSS) electrode following optical excitation at 2.1 eV. We found that the biexponential decay of this excited state has a fast component (2.6 ps) assigned to bound polaron pairs which recombine quickly or separate to be added to the slow component (7.6 ps). The latter is attributed to polarons generated via charge transfer between adjacent polymer chains.  相似文献   

9.
Time resolved photoluminescence (PL) measurements at low temperature are performed on colloidal ZnO nanocrystals dispersed in t-butanol. Considering the particle size dependence of the decay times we conclude that the luminescence is composed of two trap related emissions one of which undergoes lifetime shortening due to a non-radiative process. Initial fast shift of the spectrum within 30 ps is observed and it is interpreted as a fast hole cooling just after the excitation.  相似文献   

10.
通过比较分析聚(9,9-二辛基芴)(PFO)和聚(9,9-二辛基芴-共-苯并噻二唑)(F8BT),对半导体聚合物的光物理特性进行了系统研究. 量子化学计算显示,苯并噻二唑单元的引入促进了链内电荷转移(ICT),调节了聚合物的电子跃迁机制. 瞬态吸收测定表明,在单分散系统中的受激PFO衰减时主要表现为链内激子弛豫.在F8BT溶液中,ICT状态出现,并参与到激发态的弛豫过程中. 凝聚相中PFO和F8BT的弛豫过程加速和显示了在高激发强度下具有显著的激子湮灭行为. 在相同的激发强度下,F8BT的平均寿命长于PFO,有助于实现良好的电荷离域.  相似文献   

11.
CdS micro- and nano-structures (micro/nanotubes and nanostructured films) were obtained by ammonia-free chemical bath deposition using polymer templates (ion track-etched polycarbonate membranes and poly(styrene-hydroxyethyl methacrylate) nanosphere arrays). The semiconductor structures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), optical absorption, photoluminescence and electrical measurements. The diameters of CdS tubes are between 300 nm and few microns and the lengths are up to tens of micrometers. The SEM images prove that the CdS films are nanostructured due to the deposition on the polymer nanosphere arrays. For both CdS structures (tubes and films) the XRD patterns show a hexagonal phase. The optical studies reveal a band gap value of about 2.5?2.6 eV and a red luminescence at ~1.77 eV. A higher increase of conductivity is observed for illuminating the CdS nanostructured film when compared to the simple semiconductor film. This is a consequence of the periodic patterning induced by the polymer nanosphere array.  相似文献   

12.
A model is proposed for photoluminescence quenching due to resonant energy transfer in a blend of a conjugated polymer and a low-molecular energy acceptor. An analytical dependence of the normalized photoluminescence intensity on the acceptor concentration is derived for the case of a homogeneous blend. This dependence can be described by two fitting parameters related to the Förster radii for energy transfer between conjugated segments of the polymer and between the conjugated polymer segment and the energy acceptor. Asymptotic approximations are obtained for the model dependence that make it possible to estimate the contribution from the spatial migration of excitons to the photoluminescence quenching. The proposed model is used to analyze experimental data on the photoluminescence quenching in a blend of the soluble derivative of poly(p-phenylene vinylene) and trinitrofluorenone [13]. The Förster radius for resonant energy transfer between the characteristic conjugated segment of poly(p-phenylene vinylene) and the energy acceptor is determined to be r F = 2.6 ± 0.3 nm.  相似文献   

13.
The optical properties of high-concentration solutions of conjugated molecules are dominated by inner-filter and re-absorption effects. We apply a simple model to isolate the contributions from these phenomena to the non-linearity of the observed photoluminescence (PL) intensity with concentration. Poly(9,9-dioctylflourene) (PFO) solutions were studied across a range of concentrations and in a number of different solvents. The model accurately predicts the behaviour of PFO in good solvents up to concentrations above 0.1 mg/ml. In solutions of PFO in poor solvents and at high concentrations where we find a significant amount of β-phase PFO present the model is less accurate. We attribute the difference between predicted PL behaviour and that observed to non-radiative energy transfer from the bulk “glassy” phase PFO to the β-phase PFO.  相似文献   

14.
《Current Applied Physics》2020,20(12):1359-1365
The property changes of polymeric films upon degradation are important to develop strategies to prolong the device lifetimes. In this regard, we investigated the effects of ultraviolet-ozone (UVO) treatment on the electronic structures of poly (9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) and poly (9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) films. We found that as the UVO treatment time increased, the intensities of the UV–vis and photoluminescence spectra of both F8BT and PFO films exponentially decayed owing to the destruction of the conjugated system of the films. As per the X-ray photoelectron spectra, both the F8BT and PFO films showed significant oxidation and p-doping effects upon UVO treatment. In addition, UVO treatment caused the etching of the polymeric films, and their thickness gradually decreased; the etching rate with UVO treatment was faster for PFO than for F8BT. These results indicate that the functionalization of polymers with UVO treatment requires the careful consideration of the resulting changes in their electronic structure.  相似文献   

15.
In this paper we report the optical studies of single wall carbon nanotubes dispersed in biomaterials. We have obtained very stable suspensions of SWNTs, which allowed us to get good photoluminescence signal from the individually dispersed nanotubes. These new hybrid systems may find some applications in bionanocomposites with photoluminescence properties and in biosensors. Furthermore, the dispersion of carbon nanotubes in these biocompatible materials is important for evaluating the toxicity of either isolated or lightly bundled single wall carbon nanotubes.  相似文献   

16.
The role of organic capping ligand of semiconductor nanoparticles in dictating the interfacial charge transfer processes in hybrid semiconductor nanoparticles/polymer-based photovoltaic devices is investigated. Morphology, optical and structural study of the CdS nanoparticles and the hybrid material were accomplished using X-ray diffraction (XRD), absorption (UV–vis), atomic force microscopy (AFM), transmission electron microscopy (TEM), photoluminescence (PL) and time resolved photoluminescence spectroscopy (PLRT). A broad band absorption in UV–visible region and considerable fluorescence quenching of MEH-PPV in the composites are noted indicating a photo-induced charge transfer and dissociation of excitons. Time-resolved photoluminescence measurements indicating decreased lifetime further confirm this process. The solar cells open-circuit voltage and short-circuit current were improved using thiophenol modified CdS nanoparticles as electron acceptor in comparison to MEH-PPV only device demonstrating a promising approach to enhance charge transport in the hybrid nanoparticles–polymer composite photovoltaic cells (PV).  相似文献   

17.
We demonstrate intrinsic white light emission from hybrid light emitting diodes fabricated using an inorganic–organic hybrid junction grown at 50 °C on a paper substrate. Cyclotene was first spin coated on the entire substrate to act as a surface barrier layer for water and other nutrient solutions. The active area of the fabricated light emitting diode (LED) consists of zinc oxide nanorods (ZnO NRs) and a poly(9,9‐dioctylfluorene) (PFO) conducting polymer layer. The fabricated LED shows clear rectifying behavior and a broad band electroluminescence (EL) peak covering the whole visible spectrum range from 420 nm to 780 nm. The color rendering index (CRI) was calculated to be 94 and the correlated color temperature (CCT) of the LED was 3660 K. The low process temperature and procedure in this work enables the use of paper substrate for the fabrication of low cost ZnO–polymer white LEDs for applications requiring flexible/disposable electronic devices. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Two cationic conjugated polyelectrolytes (CPs, P1i and P2i) were synthesized and examined as a fluorescence resonance energy transfer (FRET) donor to fluorescein (Fl)-labeled single-stranded DNA (ssDNA–Fl) using steady-state and time-resolved photoluminescence (PL) spectroscopy. The two polymers have the same π-conjugation with the main structural difference being the presence of the spiro-anthracenyl substituents orthogonal to the polymer backbone of P2i. These spiro-substituents can function as a molecular spacer that increases the intermolecular separation in the electrostatic complex with ssDNA–Fl. We measured almost complete PL quenching of the excited Fl1 after electrostatic complexation with P1i (PL lifetime 4 ns  78 ps) and relatively moderate quenching with P2i (PL lifetime 4 ns  552 ps). A quenching efficiency (ΦeT) of 98% and 86% was obtained for P1i/ssDNA–Fl and for P2i/ssDNA–Fl, respectively. Both systems have same thermodynamic driving force for quenching as a result of them having the same electronic structures. This discrepancy can be explained in terms of the reduced quenching (via electron transfer, eT) by the increased D–A distance due to the existence of spiro-attached molecular spacers in P2i. It shows that thermodynamically favorable eT quenching can be controlled kinetically by modulating the D–A intermolecular distance using molecular spacers, which suggests an important molecular design guideline for efficient CPs-based DNA detection.  相似文献   

19.
Excited-state lifetimes of isolated single-walled semiconducting carbon nanotubes (SWNTs) have been measured for the first time; these excited states, observed over the 400- to 1800-nm spectral domain, possess lifetimes that range from several ps to more than 100 ps. Sub-ps to ps decay components are assigned to relaxation in SWNT bundles. Interrogation of the samples with different SWNT mean diameters further confirms the dependence of the excited-state lifetime on roll-up vector. The ratio of fast and slow decaying component contributions in the first van Hove band can be viewed as a measure of the bundle content. PACS 78.67.Ch; 78.47.+p; 61.46.+w; 73.22.-f  相似文献   

20.
An azide group-containing conjugated ionic polymer was synthesized by the direct polymerization of 2-ethynylpyridine and 6-azidohexyl iodide at 60 °C in methanol without any additional initiator or catalyst. This reaction proceeded well in homogeneous manner to give a moderate yield of the polymer (yield: 71%). The initial light-brown solution of 2-ethynylpyridine and 6-azidohexyl iodide became a viscous dark-red solution as the polymerization proceeded. The FT-IR spectrum of the polymer did not show the acetylenic CC bond stretching (2110 cm−1) and acetylenic C–H bond stretching (3293 cm−1) frequencies of 2-ethynylpyridine. This polymer was completely soluble in water, methanol, DMF, and DMSO, and the polymer was found to be mostly amorphous. The photoluminescence (PL) spectra of poly[N-(6-azidohexyl)-2-ethynylpyridinium iodide] showed that the photoluminescence peak is located at 596 nm, corresponding to a photon energy of 2.08 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号