首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
n + clusters (n=2-9)deposited onto highly oriented pyrolytic graphite (HOPG) substrates at liquid nitrogen temperatures. The deposition was carried out with variable kinetic energies of the clusters. Clusters deposited with high kinetic energy (up to 60 eV/cluster) become fragmented upon impact. For low deposition energies (1–4 eV/cluster) the size dependence of the photoelectron spectra reveals a pronounced odd/even effect, which is well known for gas phase silver clusters. This indicates that the soft deposited clusters retain their size and identity on the sample. The phase of the odd/even effect suggests that transient negatively charged cluster ions serve as an intermediate step in the two-photon photoemission process. The lifetime of the anions rises with cluster size. This is attributed to an increasing electronic density of states for larger clusters. Received: 26 October 1998 / Revised version: 16 December 1998  相似文献   

2.
We report on a systematic study of the implantation of size-selected AgN + clusters on a graphite sample, for different cluster sizes (N = 1,3,7,9,13) and different impact energies (E = 1-30 keV). Results show that the implantation depth scales linearly with the momentum of the cluster, with a stopping power which depends on cluster size. We have particularly investigated the effects of the size and the geometry of the cluster on the implantation into the graphite substrate. A sort of universal behavior, which unifies different elements and different cluster geometries, can be recognized by scaling the momentum with the cluster projected surface. The stopping power of the cluster while penetrating the HOPG surface has been investigated for each cluster size, and a molecular effect is recognized, meaning that the stopping power is not additive in the number of atoms of the cluster.Received: 24 November 2003, Published online: 10 February 2004PACS: 61.46. + w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals - 68.55.Ln Defects and impurities: doping, implantation, distribution, concentration, etc. - 79.20.Rf Atomic, molecular, and ion beam impact and interactions with surfaces - 81.05.Uw Carbon, diamond, graphite  相似文献   

3.
We have investigated the implantation of Ag(N) (N = 20-200) clusters into a graphite substrate over the range of energies (E) 0.75-6 keV using molecular dynamics simulations. We find that after implantation the silver clusters remain coherent, albeit amorphous, and rest at the bottom of an open tunnel in the graphite created by the impact. It is found that the implantation depth of the clusters varies linearly as E/N2/3. We conclude that the cluster is decelerated by a constant force proportional to its cross-sectional area. We also identify a threshold energy for surface penetration associated with elastic compression of the graphite substrate.  相似文献   

4.
Scanning tunnelling microscopy (STM) and molecular dynamics (MD) simulations have been used to investigate the implantation of Ag7 - clusters into the graphite surface. An experimental measure of the implantation depth of individual clusters is gained via thermal oxidation of the bombarded graphite surfaces. This process results in etching of the cluster-induced defects to form etch pits which grow laterally whilst retaining the depth of the implanted cluster. STM imaging of the etch pits reveals the distribution of implantation depths for deposition energies of 2 keV and 5 keV. Molecular dynamics simulations for clusters of 5 keV energy show that the implantation depth for Ag7 - is largely independent of the impact site on the graphite surface and the cluster orientation. The implantation depth found by MD lies at the upper edge of the experimental depth distribution. Received 30 November 2000  相似文献   

5.
Highly oriented pyrolytic graphite (HOPG) was ablated by a 193-nm ArF excimer laser in air. The fluence was varied in the range 1-25 J/cm2. Every laser shot hit a pristine graphite surface. The emerging shock wave was recorded by a nanosecond-resolution photographic arrangement. The velocity of the shock wave as a function of time and laser fluence was measured. The amount of energy that generates the shock wave was determined and found to be about 5-7% of the incident laser energy. The shock wave is already present 10-15 ns after the maximum of the incident laser pulse. These facts imply that, even if high-energy (10-100 eV) ions, atoms, or clusters leave the surface, a layer several 10 nm thick has to be removed during this short period. The temperature of the shock front is ~2500-4000 K, as derived from the measured velocities. Measuring the ablation depth by atomic force microscopy as a function of fluence revealed that the single-shot ablation threshold is 1.4ǂ.2 J/cm2, and the effective absorption coefficient is ~1.5᎒5 cm-1.  相似文献   

6.
The geometrical structures, relative stabilities, electronic and magnetic properties of small PdnIr (n = 1–8) clusters have been systematically investigated using density functional theory at the B3PW91 level. The optimised geometries show that the lowest-energy structures of PdnIr clusters prefer a three-dimensional configuration. The relative stability of these clusters was examined by analysis of the binding energies per atom, fragmentation energies, the second-order difference of energies and the HOMO–LUMO energy gaps as a function of cluster size. The obtained results exhibit that the Pd2Ir, Pd3Ir and Pd5Ir clusters are more stable than their neighbouring clusters. The energy gap of the Pd2Ir cluster is the largest of all the clusters (2.258 eV). In addition, the charge transfers, vertical ionisation potentials, vertical electron affinities and chemical hardness were calculated and discussed. The magnetism calculations indicate that the total magnetic moment of PdnIr clusters is mainly localised on the iridium atom for Pd1–6Ir clusters. Meanwhile, the 5d orbital plays the key role in the magnetic moment of the iridium atom.  相似文献   

7.
The ultrasonic attenuation of a γ-irradiated, deformed, single-crystal of lead has been measured between 77 and 270 K. Constant heating rate and isothermal anneals after low temperature irradiation yielded two dislocation pinning stages centered at 140 and 200 K and two dislocation depinning stages centered about 170 and 250 K. For an unirradiated sample one pinning stage centered at 170 and one depinning stage centered at 250 K were observed. Activation energies were calculated from isothermal anneals using an eigenfunction expansion model to be 0·16±0·04 and 0·36±0·05 eV for the pinning stages in the irradiated crystal and 0·28±0·05 eV for the pinning stage in the unirradiated crystal. The activation energy calculated from the same isothermal anneals using a Cottrell-Bilby analysis was 0·23±0·03 eV for the low temperature pinning stage in the irradiated crystal. The other activation energies were not changed. The discrepancy is discussed in Part II.  相似文献   

8.
The study of metallic carbonyl clusters as precursors in tailoring the heterogeneous metal catalysts has been of great importance. The catalytic nature of the adsorbed clusters in thin film form depends on the chemical properties of the substrate used. The metal-support interaction will determine various properties such as the surface morphology, adsorption features and the structural orientations. We report a scanning tunneling microscopy (STM) study of an osmium carbonyl cluster (Os3(CO)11(NCCH3)) adsorbed on highly oriented pyrolytic graphite (HOPG). STM measurements showed that the osmium carbonyl cluster interacts with HOPG in such a way that it adsorbs on the basal plane showing regular lattice structure, whereas the axial planes of the HOPG surface shows no ordered structure. The regular cluster lattice structure of the carbonyl cluster on the basal plane of the graphite has lattice parameters of a=1.4 nm and b=1.5 nm. We believe that the regular orientation of the cluster indicates a monolayer adsorption of the cluster on the graphite basal planes. Scanning tunneling spectroscopy (STS) measurements also indicated an insulating behavior for the cluster molecules on HOPG, with a significant energy gap value of ca. 300 mV. The cluster interaction at the active sites, i.e. axial planes of the graphite, was also observed by in situ STM measurements.  相似文献   

9.
The growth of Palladium nano-clusters prepared by atomic beam deposition on prestructured highly oriented pyrolytic graphite (HOPG) surfaces has been investigated by means of scanning tunnelling microscopy (STM). Preformed nanosized pits created on the HOPG surfaces are used as localized pinning sites for Pd cluster nucleation and growth at room temperature. We succeeded in obtaining Pd clusters of nanometric size and with rather sharp size distributions. A systematic morphological study conducted by STM reveals a linear dependence between the height and the diameter of the Pd nanostructures. Finally, Pd nano-clusters stabilized on prestructured HOPG surfaces were found to be active catalysts in the Heck cross-coupling reaction.  相似文献   

10.
We report on how different cluster deposition regimes can be obtained and observed by in situ scanning tunneling microscopy by exploiting deposition parameters in a pulsed laser deposition process. Tungsten clusters were produced by nanosecond pulsed laser ablation in Ar atmosphere at different pressures and deposited on Au(1 1 1) and HOPG surfaces. Deposition regimes including cluster deposition-diffusion-aggregation, cluster melting and coalescence and cluster implantation were observed, depending on background gas pressure and target-to-substrate distance which influence the kinetic energy of the ablated species. These parameters can thus be easily employed for surface modification by cluster bombardment, deposition of supported clusters and growth of films with different morphologies. The variation in cluster mobility on different substrates and its influence on aggregation and growth mechanisms has also been investigated.  相似文献   

11.
M. Kappel  J. Küppers   《Surface science》1999,440(3):387-397
Surfaces of highly oriented pyrolytic graphite (HOPG) were bombarded with 100 eV and 500 eV He ions at ion doses of a few 1015 cm2 and temperatures ranging from 300 K to 800 K. AFM images were recorded to investigate the topography of the surfaces after ion bombardment. Supplementary electron energy loss (EEL) and thermal desorption (TD) spectra were measured to determine the C sp2 fraction of the bombarded surfaces and the amount of trapped He. The temperature at which He ion bombardment was performed had a drastic effect on the surface structure and topography of the targets on the angstrom-scale and micrometer-scale as well. At 300 K, limited defect atom transport revealed an amorphous but relatively flat HOPG surface. Bombardment at 400 K leads to a granular structure of small protrusions in micrometer-scale AFM images, however, without crystalline order on the surface. The protrusions are due to the formation of subsurface clusters of carbon formed by atoms displaced by ion irradiation. Towards higher temperatures during bombardment the clusters agglomerate and cause the surface layers to bend upwards in dome-like shapes. Simultaneously, the microscopic order of the graphite lattice recovers. At 800 K large areas of the top layer retain their order during bombardment, however, a small number of domes indicate that there still exist some subsurface C clusters. The cluster–cluster distance deduced from the dome distribution indicates that the clusters grow through a ripening process. Annealing of graphite at high temperatures subsequent to ion bombardment at low temperatures is much less effective for recovering the surface crystallinity than ion bombardment at high temperature.  相似文献   

12.
用5ns,1064nm的脉冲Nd:YAG激光,研究了乙醚团簇与纳秒激光的相互作用.在1011 W/cm2量级光强下,观察到价电子完全剥离的O6+,C4+,且这些高价离子的强度比值基本不随激光能量而变化.用阻滞电压方法测量了电离过程中溢出电子能量分布,在最大激光能量4.0×1011 W/cm2,溢出电子的平均能量为56eV,最大能量为102eV.实验结果支持了高价离子产生的“多 关键词: 高价离子 电子能量 纳秒激光 乙醚团簇  相似文献   

13.
Room temperature ferromagnetism was observed in Cr-implanted ZnO nanowires annealed at 500, 600, and 700 °C. The implantation dose for Cr ions was 1×1016 cm?2, while the implantation energies were 100 keV. Except for ZnO (100), (002), and (200) orientations, no extra diffraction peaks from Cr-related secondary phase or impurities were observed. With the increasing of annealing temperatures, the intensity of the peaks increased while the FWHM values decreased. The Cr 2p1/2 and 2p3/2 peaks, with a binding energy difference of 10.6 eV, appear at 586.3 and 575.7 eV, can be attributed to Cr3+ in ZnO nanowires. For the Cr-implanted ZnO nanowires without annealing, the band energy emission disappears and the defect related emission with wavelength of 500–700 nm dominates, which can be attributed to defects introduced by implantation. Cr-implanted ZnO nanowires annealed at 500 °C show a saturation magnetization value of over 11.4×10?5 emu and a positive coercive field of 67 Oe. The origin of ferromagnetism behavior can be explained on the basis of electrons and defects that form bound magnetic polarons, which overlap to create a spin-split impurity band.  相似文献   

14.
Density functional theory (DFT) has been applied to study the geometrical and electronic structures and the catalytic properties for NO oxidation of pure Pt and PtAu clusters. The calculated results suggest that Pt10 clusters shows the most stable structure among the pure Pt n (n = 2–13) clusters with the local maximum Δ2 E value. The doping of Au atoms reduces the stability of the clusters, and Pt6Au4 cluster has the most stable structure among Pt10?n Au n (n = 1–7) clusters, due to the closest band centers between Pt and Au atoms (0.83 eV) and the obvious s–p resonance peaks near the Fermi level. Pt6Au4 cluster displays the strongest activation of O2 molecules among Pt10?n Au n (n = 0–7) clusters, owing to the clear overlap between O 2p and Pt 6 s and Au 6 s near the Fermi level, and the more positive d band center than the others. The interaction between NO and metals changes slightly in NO/Pt10-nAun (n = 2–7) systems, which is weaker than that in NO/Pt9Au system, as a result of the decreasing resonance peaks of sp hybridization near the Fermi level. Compared to pure Pt10 cluster, the lower energy barriers and larger reaction energies on Pt6Au4 cluster suggest a higher catalytic activity of PtAu cluster for the O2 dissociation and NO oxidation reactions. Our study provides atomic-scale insights into the nature of the interfacial effect that determines NO oxidation on PtAu cluster catalysts.  相似文献   

15.
A simple and rapid process for the synthesis of Cu2SnS3 (CTS) nanoparticles by microwave heating of metal–organic precursor solution is described. X-ray diffraction and Raman spectroscopy confirm the formation of tetragonal CTS. X-ray photoelectron spectroscopy indicates the presence of Cu, Sn, S in +1, +4, ?2 oxidation states, respectively. Transmission electron microscopy divulges the formation of crystalline tetragonal CTS nanoparticles with sizes ranging 2–25 nm. Diffuse reflectance spectroscopy in the 300–2,400 nm wavelength range suggests a band gap of 1.1 eV. Pellets of CTS nanoparticles show p-type conduction and the carrier transport in temperature range of 250–425 K is thermally activated with activation energy of 0.16 eV. Thin film solar cell (TFSC) with architecture: graphite/Cu2SnS3/ZnO/ITO/SLG is fabricated by drop-casting dispersion of CTS nanoparticles which delivered a power conversion efficiency of 0.135 % with open circuit voltage, short circuit current and fill factor of 220 mV, 1.54 mA cm?2, 0.40, respectively.  相似文献   

16.
Heavy ion impact has been known to cause a loss of light elements from the near-surface region of the irradiated sample. One of the possible approaches to a better understanding of the processes responsible for the release of specific elements is to irradiate shallow-implanted samples, which exhibit a well-known depth distribution of the implanted species. In this work, the samples studied were produced by implantation of Si<1 0 0>wafers with 11B at implantation energies of 250 and 500 eV and fluence of 1.0×1015 atoms/cm 2. Elastic Recoil Detection Analysis was applied to monitor the remnant boron fluence in the sample. Irradiation of the samples by a 14.2 MeV 19F 4+ beam resulted in a slow decrease of boron remnant fluence with initial loss rates of the order of 0.05 B atom per impact ion. Under irradiation with 12 MeV 32S 3+ ions, the remnant boron fluence in Si decreased exponentially with a much faster loss rate of boron and became constant after a certain heavy ion irradiation dose. A simple model, which assumes a finite desorption range and corresponding depletion of the near-surface region, was used to describe the observations. The depletion depths under the given irradiation conditions were calculated from the measured data.  相似文献   

17.
Our numerical calculations on small carbon clusters point to the existence of a metastable three-dimensional eight-atom cluster C8 which has a shape of a six-atom triangular prism with two excess atoms above and below its bases. We gave this cluster the name “prismane.” The binding energy of prismane is 5.1 eV/atom, i.e., 0.45 eV/atom lower than the binding energy of the stable one-dimensional eight-atom cluster and 2.3 eV/atom lower than the binding energy of bulk graphite or diamond. Molecular dynamics simulations give evidence for a rather high stability of prismane, the activation energy for prismane decay being about 0.8 eV. The prismane lifetime increases rapidly as the temperature decreases, indicating the possibility of experimental observation of this cluster. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 9, 695–699 (10 November 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

18.
The deposition of size-selected clusters represents a new route to the fabrication of truly nanometer-scale surface architectures, e.g., nanopores. We report a systematic experimental study, coupled with molecular dynamics simulations, of the implantation depths of size-selected Au7, Ag7, and Si7 clusters in the model graphite substrate. For impact energies between 1.0 and 5.5 keV, we find that the implantation depth scales linearly with the momentum of the clusters for all three types of cluster. This "universal" behavior is consistent with a (viscous) retarding force proportional to the velocity of the cluster, akin to Stokes's law.  相似文献   

19.
Transparent polycarbonate samples were implanted with 1 MeV Ag+ ions to various doses ranging from 5 × 1014 to 3 × 1016 ions cm?2 with a beam current density of 900 nA cm?2. Modification in the structure of polycarbonate as a function of the implantation fluence was investigated using micro-Raman spectroscopy, glancing angle X-ray diffraction, and UV-Vis spectroscopy. Raman spectroscopy pointed toward the formation of graphite structures/clusters due to the ion implantation. UV-Vis absorption analysis suggests the formation of a carbonaceous layer and a drastic decrease in optical band gap from 4.12 eV to 0.50 eV at an implanted dose of 3 × 1016 ions cm?2. The correlation between the decrease in band gap and the structural changes is discussed.  相似文献   

20.
The sputtering of tungsten from a target at a temperature of 1470 K during irradiation by 5-eV deuterium ions in a steady-state dense plasma is discovered. The literature values of the threshold for the sputtering of tungsten by deuterium ions are 160–200 eV. The tungsten sputtering coefficient measured by the loss of weight is found to be 1.5×10?4 atom/ion at a deuterium ion energy of 5 eV. Previously, such a sputtering coefficient was usually observed at energies of 250 eV. The sputtering is accompanied by a change in the target surface relief, i.e., by the etching of the grain boundaries and the formation of a wavy structure on the tungsten surface. The subthreshold sputtering at a high temperature is explained by the possible sputtering of adsorbed tungsten atoms that are released from the traps around the interstitial atoms and come to the target surface from the space between the grains. The wavy structure on the surface results from the merging of adsorbed atoms into ordered clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号