首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silver nanoparticles stabilized in a solution of sodium carboxymethyl cellulose with a degree of substitution of 0.85 and a degree of polymerization of 600 have been synthesized. The structuring; physical, chemical, and mechanical properties; and antimicrobial activities of films prepared from sodium carboxymethyl cellulose solutions containing silver nanoparticles have been studied. The shapes, quantities, and sizes of the silver nanoparticles occurring in the sodium carboxymethyl cellulose films were determined with the use of transmission electron microscopy, atomic force microscopy, and UV spectroscopy. It was found that an increase in the concentration of silver nitrate in sodium carboxymethyl cellulose solutions, as well as photoirradiation of the films, leads to the changes in the sizes and shapes of silver nanoparticles. The shapes, sizes, and quantities of silver nanoparticles determine their biological activity. An increase in the quantity of 5- to 25-nm silver nanoparticles was found to enhance the microbicidal activities of the carboxymethyl cellulose films.  相似文献   

2.
In the present work, silver nanoparticles were in situ-generated in cellulose matrix using Ocimum sanctum leaf extract as a reducing agent. Regenerated wet cellulose films were first immersed in O. sanctum leaf extract and then it was allowed to diffuse into the films. The leaf extract–diffused wet films were dipped in different concentrated aq.AgNO3 solutions. The leaf extract inside the wet films reduced AgNO3 into nanosilver. The dry composite films were black in color. Some of the nanoparticles were also formed outside the film in the solution. The nanoparticles were viewed by transmission electron microscopy and scanning electronic microscopy techniques. The composite films showed good antibacterial activity. The cellulose, matrix, and the composite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis techniques. The tensile properties of the composite films were higher than those of the matrix. These biodegradable films can be used for packaging and medical purposes.  相似文献   

3.
Microcrystalline cellulose/nano-SiO2 composite films have been successfully prepared from solutions in ionic liquid 1-allyl-3-methylimidazolium chloride by a facile and economic method. The microstructure and properties were investigated by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, transmission electron microscopy, water contact angle, thermal gravimetric analyses, and tensile testing. The results revealed that the well-dispersed nanoparticles exhibit strong interfacial interactions with cellulose matrix. The thermal stability and tensile strength of the cellulose nanocomposite films were significantly improved over those of pure regenerated cellulose film. Furthermore, the cellulose nanocomposite films exhibited better hydrophobicity and a lower degree of swelling than pure cellulose. This method is believed to have potential application in the field of fabricating cellulose-based nanocomposite film with high performance, thus enlarging the scope of commercial application of cellulose-based materials.  相似文献   

4.
In our previous work, the CdS nanoparticles/cellulose films exhibited significantly high photocatalytic H2 production efficiency under visible light irradiation than the ordinary CdS photocatalyst. In present paper, the CdS nanoparticles were synthesized in situ in pores of the regenerated cellulose substrate and the porous structure of cellulose, formation of the CdS nanoparticles and interactions between CdS and cellulose matrix in the composite films were investigated deeply. The experimental results indicated that the micro-nano-porous structure of the cellulose matrix could be used easily to create inorganic nanoparticles, which supplied not only cavities for the formation of nanoparticles, but also a shell (semi-stiff cellulose molecules support the pore wall) to protect their nano-structure. When the cellulose films with porous structure at wet state were immersed into inorganic ions solution, the ions interacted immediately with the –OH groups of cellulose, and then transformed into inorganic composite via another treatment, finally inorganic nanoparticles formed during the dry. The pore size of the cellulose matrix decreased from 180 nm (at wet state) to about 18 nm (at dry state), leading to the formation of nanoparticles. The results revealed that the CdS nanoparticles with a mean particle diameter about 6 nm were dispersed well, and were immobilized tightly in the cellulose matrix, resulting in a portable photocatalyst with high efficiency for photocatalytic for H2 evolution. This is simple and “green” pathway to prepare the organic–inorganic hybrid materials.  相似文献   

5.
利用碱脲溶剂低温溶解纤维素,在该体系中掺杂一定比例的全硫化羧基丁苯弹性纳米粒子,制备了纤维素/全硫化弹性纳米粒子复合膜.通过透射电镜、扫描电镜、WAXD、固体核磁共振、热分析和力学性能测试等对该复合膜的结构和性能进行了表征.结果表明,全硫化羧基丁苯弹性纳米粒子(CSB ENP)均匀的分散在具有微纳孔洞结构的纤维素基体中.CSB ENP的引入对纤维素再生过程中的结晶性影响不大.纤维素/全硫化弹性纳米粒子复合膜具有良好的透光性,并且热稳定性也有所提高.加入少量的CSB ENP可以增韧纤维素膜,且能保持良好的力学性能.当CSB ENP的含量为5 wt%时复合膜的断裂拉伸强度和断裂伸长率同时得到了提高.  相似文献   

6.
Viscosity properties of dilute and concentrated ethanol solutions of blends of ethyl cellulose with polyvinylpyrrolidone and Poviargol bactericidal formulation (silver metal nanoparticles stabilized with polyvinylpyrrolidone) were studied. The physicomechanical and thermomechanical properties of films prepared from solutions of the polymer blends were determined. Experiments on solvent vapor sorption showed that ethyl cellulose is incompatible with polyvinylpyrrolidone and Poviargol in the solid state in the entire composition range examined.  相似文献   

7.
Nanocomposite cellulose films with obvious magnetic anisotropy have been prepared by in situ synthesis of plate-like Fe2O3 nanoparticles in the cellulose matrix. The influence of the concentrations of FeCl2 and FeCl3 solutions on the morphology and particle size of the synthesized Fe2O3 nanoparticles as well as on the properties of the composite films has been investigated. The Fe2O3 nanoparticles synthesized in the cellulose matrix was γ-Fe2O3, and its morphology was plate-like with size about 48 nm and thickness about 9 nm, which was totally different from those reported works. The concentration of FeCl2 and FeCl3 solution has little influence on the particle size and morphology of the Fe2O3 nanoparticles, while the content of Fe2O3 nanoparticles increased with the increase of the concentration of the precursor solution, indicating that porous structured cellulose matrix could modulate the growth of inorganic nanoparticles. The unique morphology of the Fe2O3 nanoparticles endowed the composite films with obvious magnetic anisotropy, which would expand the applications of the cellulose based nanomaterials.  相似文献   

8.
Bio-based films were prepared from LiCl/DMAc solutions containing sisal cellulose esters (acetates, butyrates and hexanoates) with different degrees of substitution (DS 0.7–1.8) and solutions prepared with the cellulose esters and 20 wt% sisal cellulose. A novel approach for characterizing the surface morphology utilized field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and contact angle analysis. XPS and ToF-SIMS were a powerful combination while investigating both the ester group distribution on the surface and effects of cellulose content on the film. The surface coverage by ester aliphatic chains was estimated using XPS measurements. Fibrous structures were observed in the FE-SEM images of the cellulose and bio-based films, most likely because the sisal cellulose chains aggregated during dissolution in LiCl/DMAc. Therefore, the cellulose aggregates remained after the formation of the films and removal of the solvent. The XPS results indicated that the cellulose loading on the longer chain cellulose esters films (DS 1.8) increased the surface coverage by ester aliphatic chains (8.2 % for butyrate and 45 % for hexanoate). However, for the shortest ester chains, the surface coverage decreased (acetate, 42 %). The ToF-SIMS analyses of cellulose acetate and cellulose hexanoate films (DS 1.8) revealed that the cellulose ester groups were evenly distributed across the surface of the films.  相似文献   

9.
Cellulose was dissolved in aq.(LiOH + urea) solution pre-cooled to –12.5°C and the wet films were prepared using ethyl alcohol coagulation bath. The gel cellulose films were dipped in 10 wt.% Cassia alata leaf extract solution and allowed the extract to diffuse into them. The leaf extract infused wet cellulose films were dipped in different concentrated aq. copper sulphate solutions and allowed for in situ generation of copper nanoparticles (CuNPs) inside the matrix. The morphological, structural, antibacterial, thermal, and tensile properties of dried cellulose/CuNP composite films were carried out. The presence of CuNPs was established by EDX spectra and X-ray diffraction. The composite films displayed higher thermal stability than the matrix due to the presence of CuNPs. Cellulose/CuNP composite films possessed better tensile strength than the matrix. The composite films showed good antibacterial activity against E.coli bacteria. We conclude that good antibacterial activity and better tensile properties of the cellulose/CuNP composite films make them suitable for antibacterial wrapping and medical purposes.  相似文献   

10.
Dispersions of nanosized gold particles are synthesized in methyl hydroxyethyl-, carboxymethyl-, and hydroxy propylmethyl cellulose solutions by chemical reduction. Sizes of nanoparticles are determined using dynamic light scattering method. Ultrathin particle layers are prepared on the surfaces of polycrystalline gold films by self-organization technique. Characteristics of these layers and constituting particles are determined by scanning tunnel microscopy. It is shown that steps with heights of 0.7–4 nm and terraces are formed on nanoparticles. It is revealed that the height of a step depends to a greater extent on the chemical nature of employed reducer (tannin or formaldehyde) than on the nature of stabilizer (cellulose derivatives). Components of dispersion medium are selectively adsorbed on these steps.  相似文献   

11.
It was demonstrated that gold nanoparticles can be obtained by using cellulose ethers, methyl hydroxyethyl cellulose and carboxymethylcellulose as reducing agents and also as nanoparticle stabilizers. IR spectral studies revealed a difference between the mechanisms of reduction and nanoparticle stabilization by these cellulose derivatives. A scanning tunnel microscope was used to examine composite films formed from nanoparticle dispersions on the surface of polycrystalline gold films. It was demonstrated that, in the case of gold nanoparticles, densely packed globular structures are formed in a carboxymethyl cellulose solution. A fibril-like structure of layers is formed in the Au+(methyl hydroxyethyl cellulose) system.  相似文献   

12.
Carbonyl and carboxyl groups introduced by oxidative processes during production and purification of celluloses determine intra- and intermolecular interactions and thus application-related bulk and surface properties of cellulosic materials. We report a comprehensive approach to the quantification of carboxyl and carbonyl groups in cellulose films upon reconstitution from NMMO solutions. Measurements of the excess conductivity were combined with the determination of the molecular weight distribution, quantification of the carboxyl and carbonyl group content, crystallinity and film swelling in aqueous solutions. TEMPO-oxidized, NMMO-regenerated cellulose films were additionally analysed as a reference system for extensive cellulose oxidation. Our reported data demonstrate that dissolution of cellulose in NMMO results in the formation of onic acids, chain degradation, increased ionization and film swelling, whereas TEMPO-oxidation introduced carbonyl groups as well as onic and uronic acids causing a significantly increased charging, ion accumulation and swelling even at higher crystallinity.  相似文献   

13.
Water responsive SiO2/cellulose nanocomposite hydrogels and films were constructed, for the first time, by dispersing SiO2 nanoparticles into cellulose solution in LiOH/urea solvent, and then by crosslinking with epichlorohydrin or regeneration in coagulation bath, respectively. The cellulose nanocomposite materials were characterized by Field emission scanning electron microscopy, FTIR, dynamic rheology, wide angle X-ray diffraction and mechanical test. The SiO2/cellulose nanocomposites at wet state or in water displayed unique behaviors, showing higher light transmittance than those before contacting with water. The results revealed that strong hydrogen-bonding interaction among water, cellulose and SiO2 led the good dispersion of SiO2 nanoparticles in the cellulose matrix. The incorporation of SiO2 nanoparticles improved the transmittance and mechanical strength of the cellulose hydrogels, and also enhanced the mechanical strength of the films. Especially, the cellulose/SiO2 nanocomposite films were milky at dry state, and changed to transparent after being soaked in water, different from the cellulose film without the SiO2 nanoparticles. In our findings, SiO2 and cellulose with water could form strong hydrogen bonding to create a homogenous network structure. The cellulose/SiO2 composite as a smart material exhibited moisture and solvent responsiveness, showing potential applications in moisture detection.  相似文献   

14.
Natural wool/cellulose blends were prepared in an ionic liquid green solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl) and the films were formed subsequently from the coagulated solutions. The wool/cellulose blend films show significant improvement in thermal stability compared to the coagulated wool and cellulose. Moreover, the blend films exhibited an increasing trend of tensile strength with increase in cellulose content in the blends which could be used for the development of wool-based materials with improved mechanical properties, and the elongations of the blends were considerably improved with respect to the coagulated films of wool and cellulose. It was found that there was hydrogen bonding interaction between hydroxyl groups of wool and cellulose in the coagulated wool/cellulose blends as determined by Fourier transform infrared (FTIR) spectroscopy. The ionic liquid was completely recycled with high yield and purity after the blend film was prepared. This work presents a green processing route for development of novel renewable blended materials from natural resource with improved properties.  相似文献   

15.
Nanocomposite hybrid films containing silicon and titanium compounds in the polymer matrix are prepared through the sol-gel method via the hydrolytic polycondensation of Si and Ti alkoxides (tetraethoxysilane and titanium tetrabutoxide) in the THF solution of a hydrophobic polymer, ethyl cellulose. Their structure and properties are studied with the use of a complex of physicochemical methods. During the hydrolysis of tetraethoxysilane and the subsequent polycondensation of the reaction products, silicon atoms are incorporated into the polymer and form -O-Si-O-bonds involving hydroxyl groups of ethyl cellulose. In the sol-gel method, titanium alkoxide yields nanosized particles of titanium dioxide that play the role of fillers in the polymer matrix. Titanium-containing films show solubility in THF and, after prolonged contact with the solvent, precipitate titanium dioxide from the solution. Hybrid films containing silicon are insoluble owing to the formation of a chemical network between polymer molecules and Si-OH groups of the products of hydrolysis of silicon alkoxide, as confirmed by the IR data. It is shown that the amounts and types of alkoxides and the diameters of the structures formed in the polymer matrix via the sol-gel procedure affect the hydrophilicity levels of ethyl cellulose hybrid films and their abilities to swell in water and aqueous solutions of organic dyes (brilliant blue and methylene blue). Ethyl cellulose hybrid films are hydrophilic, and they facilitate the removal of dye molecules from aqueous solutions. The best properties are featured by the films containing nanosized particles of titanium dioxide in the polymer matrix.  相似文献   

16.
A systematic study of the surface forces between a cellulose sphere and cellulose thin films of varying crystallinity has been conducted as a function of ionic strength and pH. Semicrystalline cellulose II surfaces and amorphous cellulose films were prepared by spin-coating of the precursor cellulose solutions onto oxidized silicon wafers before regeneration in water. Crystalline cellulose I surfaces were prepared by spin-coating wafers with aqueous suspensions of sulfate-stabilized cellulose I nanocrystals. These preparation methods produced thin, smooth films suitable for surface forces measurements. The interaction with the cellulose I was monotonically repulsive at pH 3.5, 5.8, and 8.5 and at 0.1, 1, and 10 mM ionic strengths. This was attributed to the presence of strongly ionizable sulfur-containing groups on the cellulose nanocrystal surfaces. The amorphous film typically showed a steric interaction up to 100 nm away from the interface that was independent of the solution conditions. A range of surface forces were successfully measured on the semicrystalline cellulose II films; attractive and repulsive regimes were observed, depending on pH and ionic strength, and were interpreted in terms of van der Waals and electrostatic interactions. Clearly, the forces acting near cellulose surfaces are very dependent on the way the cellulose surface has been prepared.  相似文献   

17.
Charging and swelling of cellulose in aqueous environments are of highest interest with respect to the performance of cellulose based products and applications. To unravel the interplay between ionization and structural features of the biopolymer hydrogel we compared non-crosslinked and crosslinked cellulose thin films based on a determination of the Donnan potential [S.S. Dukhin, R. Zimmermann, C. Werner, J. Colloid Interface Sci. 274 (2004) 309] from microslit electrokinetic (streaming potential/streaming current) experiments and layer thicknesses from ellipsometry in aqueous electrolyte solutions. The pH dependence of the Donnan potential, reflecting the ionization of carboxylic acid groups within the cellulose films, was found to be significantly different from the related trend of the streaming current which reflects the characteristics of the topmost surface of the layers: While carboxylic acid groups on the surface of the films dissociate as isolated functionalities, the electrostatic interactions of ionized groups within the cellulose layers cause an incomplete dissociation (pK shift) of the carboxylic acid and a layer expansion (swelling) in the alkaline pH range. The system was found to restrict its volume charge density even after structural restrictions (crosslinking) of the layer and at lower ionic strength of the solutions through a further decrease of the degree of dissociation of the carboxylic acid functions. These findings were attributed to the local accumulation of the carboxylic acid groups caused by preferential oxidation of the amorphous regions of the cellulose and to the ordered water structure within the layer.  相似文献   

18.
The rheological properties of chitosan solutions in a 2% aqueous solution of acetic acid with added montmorillonite nanoparticles and the mechanical properties and structural organization of chitosan-based composite films are studied. The interaction between the polymer functional groups and surface charges of nanoplatelets is confirmed by conductometric and potentiometric measurements. With the use of a X-ray diffraction analysis, it is shown that the nanoparticles in films are in the exfoliated and intercalated states. The incorporation of up to 10 wt % modified montmorillonite nanoparticles into the chitosan matrix results in a successive increase in rigidity and a decrease in the elongation at break.  相似文献   

19.
Preparation conditions and properties of cellulose solutions in DMAA containing 7–8% lithium chloride are considered. Investigation of the optical anisotropy and structure of cellulose solutions in this solvent confirms that the LS state is attained with an increase in the concentration of cellulose. On the basis of these cellulose solutions, fibers not ranking below viscose fibers in mechanical properties are prepared. The use of a mixed solution of 95% cellulose and 5% poly(amidobenzimidazole) in DMAA containing 7% lithium chloride makes it possible to prepare films and fibers whose strength is more than two times greater than the strength of cellulose hydrate fibers. The deformation-driven orientation and supramolecular structure of fibers and films are studied by spectroscopy and small-angle scattering of polarized light.  相似文献   

20.
Poly(ethylene terephthalate) (PET) (intrinsic viscosity 0.59) and cellulose (Whatman) are compatible in up to 7.5% (w/v) solutions in trifluoroacetic acid and in mixtures of trifluoroacetic acid and methylene chloride. Evaporation of the solutions yielded films that did not contain cellulose per se, but rather partial esters of cellulose and trifluoroacetic acid. Clear films were cast from these solutions with compositions of 100/0, 75/25, 50/50, 25/75, and 0/100 PET. cellulose (w/w). Infrared spectra and DSC measurements indicate specific polymer-polymer interaction although two Tg were observed. Hydrolysis of the trifluoroacetate films to blends of PET and regenerated cellulose was accomplished by suspending the films in water at the boil. Infrared spectra indicate no interaction between the two polymers, although the films of the 50/50 and 25/75 PET. cellulose compositions were clear. The 25/75 composition, from its Tg and melting-point behavior appears to be a dispersion of very small-particle PET in a cellulose matrix. The 75/25 composition became opalescent during the hydrolysis and may be a dispersion of large-particle cellulose in a PET matrix. The regenerated cellulose appears to be a mixture of cellulose II and IV polymorphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号