首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conotoxins are a large family of disulfide‐rich peptides that contain unique cysteine frameworks that target a broad range of ion channels and receptors. We recently discovered the 33‐residue conotoxin Φ‐MiXXVIIA from Conus miles with a novel cysteine framework comprising three consecutive cysteine residues and four disulfide bonds. Regioselective chemical synthesis helped decipher the disulfide bond connectivity and the structure of Φ‐MiXXVIIA was determined by NMR spectroscopy. The 3D structure displays a unique topology containing two β‐hairpins that resemble the N‐terminal domain of granulin. Similar to granulin, Φ‐MiXXVIIA promotes cell proliferation (EC50 17.85 μm ) while inhibiting apoptosis (EC50 2.2 μm ). Additional framework XXVII sequences were discovered with homologous signal peptides that define the new conotoxin superfamily G2. The novel structure and biological activity of Φ‐MiXXVIIA expands the repertoire of disulfide‐rich conotoxins that recognize mammalian receptors.  相似文献   

2.
Peptides of homochiral α‐aminoxy acids of nonpolar side chains can form a 1.88‐helix. In this paper, we report the conformational studies of α‐aminoxy peptides 1 , 2 , 3 , which have functionalized side chains, in both nonpolar and polar solvents. 1H NMR, XRD, and FTIR absorption studies confirm the presence of the eight‐membered‐ring intramolecular hydrogen bonds (the N‐O turns) in nonpolar solvents as well as in methanol. CD studies of peptides 1 , 2 , 3 in different solvents indicate that a substantial degree of helical content is retained in methanol and acidic aqueous buffers. The introduction of functionalized side chains in α‐aminoxy peptides provides opportunities for designing biologically active peptides.  相似文献   

3.
Natriuretic peptides (NP) play important roles in human cardiac physiology through their guanylyl cyclase receptors NPR‐A and NPR‐B. Described herein is a bifunctional O‐glycosylated natriuretic peptide, TcNPa, from Tropidechis carinatus venom and it unusually targets both NPR‐A and NPR‐B. Characterization using specific glycosidases and ETD‐MS identified the glycan as galactosyl‐β(1‐3)‐N‐acetylgalactosamine (Gal‐GalNAc) and was α‐linked to the C‐terminal threonine residue. TcNPa contains the characteristic NP 17‐membered disulfide ring with conserved phenylalanine and arginine residues. Both glycosylated and nonglycosylated forms were synthesized by Fmoc solid‐phase peptide synthesis and NMR analysis identified an α‐helix within the disulfide ring containing the putative pharmacophore for NPR‐A. Surprisingly, both forms activated NPR‐A and NPR‐B and were relatively resistant towards proteolytic degradation in plasma. This work will underpin the future development of bifunctional NP peptide mimetics.  相似文献   

4.
α‐Aminoxy peptides are peptidomimetic foldamers with high proteolytic and conformational stability. To gain an improved synthetic access to α‐aminoxy oligopeptides we used a straightforward combination of solution‐ and solid‐phase‐supported methods and obtained oligomers that showed a remarkable anticancer activity against a panel of cancer cell lines. We solved the first X‐ray crystal structure of an α‐aminoxy peptide with multiple turns around the helical axis. The crystal structure revealed a right‐handed 28‐helical conformation with precisely two residues per turn and a helical pitch of 5.8 Å. By 2D ROESY experiments, molecular dynamics simulations, and CD spectroscopy we were able to identify the 28‐helix as the predominant conformation in organic solvents. In aqueous solution, the α‐aminoxy peptides exist in the 28‐helical conformation at acidic pH, but exhibit remarkable changes in the secondary structure with increasing pH. The most cytotoxic α‐aminoxy peptides have an increased propensity to take up a 28‐helical conformation in the presence of a model membrane. This indicates a correlation between the 28‐helical conformation and the membranolytic activity observed in mode of action studies, thereby providing novel insights in the folding properties and the biological activity of α‐aminoxy peptides.  相似文献   

5.
In this report, we have synthesized organic/inorganic hybrid peptide–poly(?‐caprolactone) (PCL) conjugates via ring opening polymerization (ROP) of ?‐caprolactone (CL) in the presence of two sequence defined peptide initiators, namely POSS‐Leu‐Aib‐Leu‐NH2 (POSS: polyhedral oligomeric silsesquioxane; Leu: Leucine; Aib: α‐aminoisobutyric acid) and OMe‐Leu‐Aib‐Leu‐NH2. Covalent attachment of peptide segments with the PCLs were examined by 1H and 29Si NMR spectroscopy, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and FTIR spectroscopy. Supramolecular inclusion complexations of synthesized peptide‐PCL conjugates with α‐cyclodextrin (α‐CyD) were studied to understand the effect of POSS/OMe‐peptide moieties at the PCL chain ends. Inclusion complexation of peptide‐PCL conjugates with α‐CyD produced linear polypseudorotaxane, confirmed by 1H NMR, FTIR, powder X‐ray diffraction (PXRD), polarized optical microscopy (POM) and differential scanning calorimetry (DSC). Extent of α‐CyD threading onto the hybrid peptide‐PCL conjugated polymers is less than that of α‐CyD threaded onto the linear PCL. Thus, PCL chains were not fully covered by the host α‐CyD molecules due to the bulky POSS/OMe‐peptide moieties connected with the one edge of the PCL chains. PXRD experiment reveals channel like structures by the synthesized inclusion complexes (ICs). Spherulitic morphologies of POSS/OMe‐peptide‐PCL conjugates were fully destroyed after inclusion complexation with α‐CyD and tiny nanoobjects were produced. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3643–3651.  相似文献   

6.
In the presence of catalytic amounts of RhH(PPh3)4, 1,2‐bis(diphenylphosphino)ethane (dppe), and dimethyl disulfide, cyclic and acyclic α‐phenyl ketones reacted with p‐cyano‐α‐methylthioa‐ cetophenone giving α‐methylthio‐α‐phenylketones. The activated catalyst containing dimethyl disulfide was effective for the α‐methylthiolation reaction of these less reactive substrates. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 22:18–23, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20650  相似文献   

7.
Short α‐peptides with less than 10 residues generally display a low propensity to nucleate stable helical conformations. While various strategies to stabilize peptide helices have been previously reported, the ability of non‐peptide helical foldamers to stabilize α‐helices when fused to short α‐peptide segments has not been investigated. Towards this end, structural investigations into a series of chimeric oligomers obtained by joining aliphatic oligoureas to the C‐ or N‐termini of α‐peptides are described. All chimeras were found to be fully helical, with as few as 2 (or 3) urea units sufficient to propagate an α‐helical conformation in the fused peptide segment. The remarkable compatibility of α‐peptides with oligoureas described here, along with the simplicity of the approach, highlights the potential of interfacing natural and non‐peptide backbones as a means to further control the behavior of α‐peptides.  相似文献   

8.
Cyclic pentapeptides (e.g. Ac‐(cyclo‐1,5)‐[KAXAD]‐NH2; X=Ala, 1 ; Arg, 2 ) in water adopt one α‐helical turn defined by three hydrogen bonds. NMR structure analysis reveals a slight distortion from α‐helicity at the C‐terminal aspartate caused by torsional restraints imposed by the K(i)–D(i+4) lactam bridge. To investigate this effect on helix nucleation, the more water‐soluble 2 was appended to N‐, C‐, or both termini of a palindromic peptide ARAARAARA (≤5 % helicity), resulting in 67, 92, or 100 % relative α‐helicity, as calculated from CD spectra. From the C‐terminus of peptides, 2 can nucleate at least six α‐helical turns. From the N‐terminus, imperfect alignment of the Asp5 backbone amide in 2 reduces helix nucleation, but is corrected by a second unit of 2 separated by 0–9 residues from the first. These cyclic peptides are extremely versatile helix nucleators that can be placed anywhere in 5–25 residue peptides, which correspond to most helix lengths in protein–protein interactions.  相似文献   

9.
Catalytic enantioselective α‐fluorination reactions of carbonyl compounds are among the most powerful and efficient synthetic methods for constructing optically active α‐fluorinated carbonyl compounds. Nevertheless, α‐fluorination of α‐nonbranched carboxylic acid derivatives is still a big challenge because of relatively high pKa values of their α‐hydrogen atoms and difficulty of subsequent synthetic transformation without epimerization. Herein we show that chiral copper(II) complexes of 3‐(2‐naphthyl)‐l ‐alanine‐derived amides are highly effective catalysts for the enantio‐ and site‐selective α‐fluorination of N‐(α‐arylacetyl) and N‐(α‐alkylacetyl) 3,5‐dimethylpyrazoles. The substrate scope of the transformation is very broad (25 examples including a quaternary α‐fluorinated α‐amino acid derivative). α‐Fluorinated products were converted into the corresponding esters, secondary amides, tertiary amides, ketones, and alcohols with almost no epimerization in high yield.  相似文献   

10.
The use of synthetic bridges as surrogates for disulfide bonds has emerged as a practical strategy to obviate the poor stability of some disulfide‐containing peptides. However, peptides incorporating large‐span synthetic bridges are still beyond the reach of existing methods. Herein, we report a native chemical ligation (NCL)‐assisted diaminodiacid (DADA) strategy that enables the robust generation of disulfide surrogate peptides incorporating surrogate bridges up to 50 amino acids in length. This strategy provides access to some highly desirable but otherwise impossible‐to‐obtain disulfide surrogates of bioactive peptide. The bioactivities and structures of the synthetic disulfide surrogates were verified by voltage clamp assays, NMR, and X‐ray crystallography; and stability studies established that the disulfide replacements effectively overcame the problems of disulfide reduction and scrambling that often plague these pharmacologically important peptides.  相似文献   

11.
We report on the characteristics of the radical‐ion‐driven dissociation of a diverse array of β‐amino acids incorporated into α‐peptides, as probed by tandem electron‐capture and electron‐transfer dissociation (ECD/ETD) mass spectrometry. The reported results demonstrate a stronger ECD/ETD dependence on the nature of the amino acid side chain for β‐amino acids than for their α‐form counterparts. In particular, only aromatic (e.g., β‐Phe), and to a substantially lower extent, carbonyl‐containing (e.g., β‐Glu and β‐Gln) amino acid side chains, lead to N? Cβ bond cleavage in the corresponding β‐amino acids. We conclude that radical stabilization must be provided by the side chain to enable the radical‐driven fragmentation from the nearby backbone carbonyl carbon to proceed. In contrast with the cleavage of backbones derived from α‐amino acids, ECD of peptides composed mainly of β‐amino acids reveals a shift in cleavage priority from the N? Cβ to the Cα? C bond. The incorporation of CH2 groups into the peptide backbone may thus drastically influence the backbone charge solvation preference. The characteristics of radical‐driven β‐amino acid dissociation described herein are of particular importance to methods development, applications in peptide sequencing, and peptide and protein modification (e.g., deamidation and isomerization) analysis in life science research.  相似文献   

12.
α‐d ‐Glucofuranose and α‐d ‐allofuranose diacetonides react with 2,4‐diorganyl 1,3,2,4‐dithiadiphosphetane‐2,4‐disulfides to form optically active dithiophosphonates in 78–81% yields, which are transformed into the corresponding ammonium salts in 90–97% yields by the treatment of n‐hexadecylamine. The S‐silyldithiophosphonate was prepared in 93% yield by the reaction of 2,4‐bis(butoxyphenyl) 1,3,2,4‐dithiadiphosphetane‐2,4‐disulfide with silyl ether of α‐d ‐glucofuranose diacetonide. One of the salts obtained possesses antibacterial activity against Staphylococcus aureus ATCC 6538‐P.  相似文献   

13.
β‐Amino acid incorporation has emerged as a promising approach to enhance the stability of parent peptides and to improve their biological activity. Owing to the lack of reliable access to β2,2‐amino acids in a setting suitable for peptide synthesis, most contemporary research efforts focus on the use of β3‐ and certain β2,3‐amino acids. Herein, we report the catalytic asymmetric synthesis of β2,2‐amino acids and their incorporation into peptides by Fmoc‐based solid‐phase peptide synthesis (Fmoc‐SPPS). A quaternary carbon center was constructed by the palladium‐catalyzed decarboxylative allylation of 4‐substituted isoxazolidin‐5‐ones. The N?O bond in the products not only acts as a traceless protecting group for β‐amino acids but also undergoes amide formation with α‐ketoacids derived from Fmoc‐protected α‐amino acids, thus providing expeditious access to α‐β2,2‐dipeptides ready for Fmoc‐SPPS.  相似文献   

14.
An α‐helix peptide (17 amino acids) bearing γ‐cyclodextrin (γ‐CD) and two naphthyl units (γ‐N217) was designed and prepared as a new type of chemosensor. The α‐helix peptide with γ‐CD sandwiched between two naphthyl moieties exhibits excimer emission by inserting the two naphthalene moieties into the γ‐CD cavity from the opposite sides in the side chain of the peptide. The two reference peptides, which have one naphthalene moiety and one γ‐CD unit, exhibit only monomer fluorescence and have larger binding constants for the examined guests than γ‐N217.  相似文献   

15.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

16.
The compounds α‐RE2B4O9, with RE = Sm (disamarium tetraborate) and Ho (diholmium tetraborate), were synthesized under conditions of high pressure and high temperature in a Walker‐type multianvil apparatus, at 7.5 GPa and 1323 K for α‐Sm2B4O9 and at 10 GPa and 1323 K for α‐Ho2B4O9. The crystal structures were determined from single‐crystal X‐ray diffraction data collected at room temperature. The structures are isotypic with the already known α‐RE2B4O9 (RE = Eu–Dy) phases, displaying the new structural motif of edge‐sharing BO4 tetrahedra next to the known motif of corner‐sharing BO4 tetrahedra. As the end members of this isotypic series, the two title compounds mark the borders of the stability field of the appearance of edge‐sharing BO4 tetrahedra.  相似文献   

17.
The small synthetic peptide, benzyl 2‐(tert‐but­oxy­carbonyl‐amino)­isobutyrate, C16H23NO4, has the α‐helical conformation [|?| = 55.8 (2)° and |ψ| = 37.9 (2)°] observed in peptide fragments of peptaibols containing the α‐amino­isobutyric acid (Aib) residue. The structure shows no intramolecular hydrogen bonding, which would disrupt the limited conformational freedom associated with this amino acid. Two weak intermolecular hydrogen contacts are observed.  相似文献   

18.
Although phase‐transfer‐catalyzed asymmetric SNAr reactions provide unique contribution to the catalytic asymmetric α‐arylations of carbonyl compounds to produce biologically active α‐aryl carbonyl compounds, the electrophiles were limited to arenes bearing strong electron‐withdrawing groups, such as a nitro group. To overcome this limitation, we examined the asymmetric SNAr reactions of α‐amino acid derivatives with arene chromium complexes derived from fluoroarenes, including those containing electron‐donating substituents. The arylation was efficiently promoted by binaphthyl‐modified chiral phase‐transfer catalysts to give the corresponding α,α‐disubstituted α‐amino acids containing various aromatic substituents with high enantioselectivities.  相似文献   

19.
Choline‐binding modules (CBMs) have a ββ‐solenoid structure composed of choline‐binding repeats (CBR), which consist of a β‐hairpin followed by a short linker. To find minimal peptides that are able to maintain the CBR native structure and to evaluate their remaining choline‐binding ability, we have analysed the third β‐hairpin of the CBM from the pneumococcal LytA autolysin. Circular dichroism and NMR data reveal that this peptide forms a highly stable native‐like β‐hairpin both in aqueous solution and in the presence of trifluoroethanol, but, strikingly, the peptide structure is a stable amphipathic α‐helix in both zwitterionic (dodecylphosphocholine) and anionic (sodium dodecylsulfate) detergent micelles, as well as in small unilamellar vesicles. This β‐hairpin to α‐helix conversion is reversible. Given that the β‐hairpin and α‐helix differ greatly in the distribution of hydrophobic and hydrophilic side chains, we propose that the amphipathicity is a requirement for a peptide structure to interact and to be stable in micelles or lipid vesicles. To our knowledge, this “chameleonic” behaviour is the only described case of a micelle‐induced structural transition between two ordered peptide structures.  相似文献   

20.
Protein‐mimics are of great interest for their structure, stability, and properties. We are interested in the synthesis of protein‐mimics containing triazole linkages as peptide‐bond surrogate by topochemical azide‐alkyne cycloaddition (TAAC) polymerization of azide‐ and alkyne‐modified peptides. The rationally designed dipeptide N3‐CH2CO‐Phe‐NHCH2CCH ( 1 ) crystallized in a parallel β‐sheet arrangement and are head‐to‐tail aligned in a direction perpendicular to the β‐sheet‐direction. Upon heating, crystals of 1 underwent single‐crystal‐to‐single‐crystal polymerization forming a triazole‐linked pseudoprotein with Gly‐Phe‐Gly repeats. During TAAC polymerization, the pseudoprotein evolved as helical chains. These helical chains are laterally assembled by backbone hydrogen bonding in a direction perpendicular to the helical axis to form helical sheets. This interesting helical‐sheet orientation in the crystal resembles the cross‐α‐amyloids, where α‐helices are arranged laterally as sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号