首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Owing to the high theoretical energy density of metal–air batteries, the aluminum–air battery has been proposed as a promising long‐term power supply for electronics. However, the available energy density from the aluminum–air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all‐solid‐state fiber‐shaped aluminum–air batteries with a specific capacity of 935 mAh g?1 and an energy density of 1168 Wh kg?1. The synthesis of an electrode composed of cross‐stacked aligned carbon‐nanotube/silver‐nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum–air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large‐scale applications.  相似文献   

2.
Owing to the high theoretical energy density of metal–air batteries, the aluminum–air battery has been proposed as a promising long‐term power supply for electronics. However, the available energy density from the aluminum–air battery is far from that anticipated and is limited by current electrode materials. Herein we described the creation of a new family of all‐solid‐state fiber‐shaped aluminum–air batteries with a specific capacity of 935 mAh g−1 and an energy density of 1168 Wh kg−1. The synthesis of an electrode composed of cross‐stacked aligned carbon‐nanotube/silver‐nanoparticle sheets contributes to the remarkable electrochemical performance. The fiber shape also provides the aluminum–air batteries with unique advantages; for example, they are flexible and stretchable and can be woven into a variety of textiles for large‐scale applications.  相似文献   

3.
A stretchable wire‐shaped lithium‐ion battery is produced from two aligned multi‐walled carbon nanotube/lithium oxide composite yarns as the anode and cathode without extra current collectors and binders. The two composite yarns can be well paired to obtain a safe battery with superior electrochemical properties, such as energy densities of 27 Wh kg?1 or 17.7 mWh cm?3 and power densities of 880 W kg?1 or 0.56 W cm?3, which are an order of magnitude higher than the densities reported for lithium thin‐film batteries. These wire‐shaped batteries are flexible and light, and 97 % of their capacity was maintained after 1000 bending cycles. They are also very elastic as they are based on a modified spring structure, and 84 % of the capacity was maintained after stretching for 200 cycles at a strain of 100 %. Furthermore, these novel wire‐shaped batteries have been woven into lightweight, flexible, and stretchable battery textiles, which reveals possible large‐scale applications.  相似文献   

4.
An aligned and laminated sulfur‐absorbed mesoporous carbon/carbon nanotube (CNT) hybrid cathode has been developed for lithium–sulfur batteries with high performance. The mesoporous carbon acts as sulfur host and suppresses the diffusion of polysulfide, while the CNT network anchors the sulfur‐absorbed mesoporous carbon particles, providing pathways for rapid electron transport, alleviating polysulfide migration and enabling a high flexibility. The resulting lithium–sulfur battery delivers a high capacity of 1226 mAh g−1 and achieves a capacity retention of 75 % after 100 cycles at 0.1 C. Moreover, a high capacity of nearly 900 mAh g−1 is obtained for 20 mg cm−2, which is the highest sulfur load to the best of our knowledge. More importantly, the aligned and laminated hybrid cathode endows the battery with high flexibility and its electrochemical performances are well maintained under bending and after being folded for 500 times.  相似文献   

5.
Flexible zinc–air batteries (ZAB) are a promising battery candidate for emerging flexible electronic devices, but the catalysis‐based working principle and unique semi‐opened structure pose a severe challenge to their overall performance at cold temperature. Herein, we report the first flexible rechargeable ZAB with excellent low‐temperature adaptability, based on the innovation of an efficient electrocatalyst to offset the electrochemical performance shrinkage caused by decreased temperature and a highly conductive hydrogel with a polarized terminal group to render the anti‐freezing property. The fabricated ZABs show excellent electrochemical performances that outperform those of many aqueous ZABs at room temperature. They also deliver a high capacity of 691 mAh g?1 and an energy density of 798 Wh kg?1 at ?20 °C (92.7 % and 87.2 % retention of the room temperature counterparts, respectively), together with excellent flexibility and reverting capability.  相似文献   

6.
Hydrofluoroethers (HFEs) have been adopted widely as electrolyte cosolvents for battery systems because of their unique low solvating behavior. The electrolyte is currently utilized in lithium‐ion, lithium–sulfur, lithium–air, and sodium‐ion batteries. By evaluating the relative solvating power of different HFEs with distinct structural features, and considering the shuttle factor displayed by electrolytes that employ HFE cosolvents, we have established the quantitative structure–activity relationship between the organic structure and the electrochemical performance of the HFEs. Moreover, we have established the linear free‐energy relationship between the structural properties of the electrolyte cosolvents and the polysulfide shuttle effect in lithium–sulfur batteries. These findings provide valuable mechanistic insight into the polysulfide shuttle effect in lithium–sulfur batteries, and are instructive when it comes to selecting the most suitable HFE electrolyte cosolvent for different battery systems.  相似文献   

7.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

8.
The fabrication of flexible, stretchable and rechargeable devices with a high energy density is critical for next‐generation electronics. Herein, fiber‐shaped Zn–air batteries, are realized for the first time by designing aligned, cross‐stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector. The combined remarkable electronic and mechanical properties of the aligned carbon nanotube sheets endow good electrochemical properties. They display excellent discharge and charge performances at a high current density of 2 A g−1. They are also flexible and stretchable, which is particularly promising to power portable and wearable electronic devices.  相似文献   

9.
The fabrication of flexible, stretchable and rechargeable devices with a high energy density is critical for next‐generation electronics. Herein, fiber‐shaped Zn–air batteries, are realized for the first time by designing aligned, cross‐stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector. The combined remarkable electronic and mechanical properties of the aligned carbon nanotube sheets endow good electrochemical properties. They display excellent discharge and charge performances at a high current density of 2 A g?1. They are also flexible and stretchable, which is particularly promising to power portable and wearable electronic devices.  相似文献   

10.
A flexible and wearable aqueous lithium‐ion battery is introduced based on spinel Li1.1Mn2O4 cathode and a carbon‐coated NASICON‐type LiTi2(PO4)3 anode (NASICON=sodium‐ion super ionic conductor). Energy densities of 63 Wh kg?1 or 124 mWh cm?3 and power densities of 3 275 W kg?1 or 11.1 W cm?3 can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li‐ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self‐chargeable unit is realized by integrating a single flexible aqueous Li‐ion battery with a commercial flexible solar cell, which may facilitate the long‐time outdoor operation of flexible and wearable electronic devices.  相似文献   

11.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

12.
Metal–CO2 batteries have attracted much attention owing to their high energy density and use of greenhouse CO2 waste as the energy source. However, the increasing cost of lithium and the low discharge potential of Na–CO2 batteries create obstacles for practical applications of Li/Na–CO2 batteries. Recently, earth‐abundant potassium ions have attracted considerable interest as fast ionic charge carriers for electrochemical energy storage. Herein, we report the first K–CO2 battery with a carbon‐based metal‐free electrocatalyst. The battery shows a higher theoretical discharge potential (E?=2.48 V) than that of Na–CO2 batteries (E?=2.35 V) and can operate for more than 250 cycles (1500 h) with a cutoff capacity of 300 mA h g?1. Combined DFT calculations and experimental observations revealed a reaction mechanism involving the reversible formation and decomposition of P121/c1‐type K2CO3 at the efficient carbon‐based catalyst.  相似文献   

13.
The lithium–oxygen battery has the potential to deliver extremely high energy densities; however, the practical use of Li‐O2 batteries has been restricted because of their poor cyclability and low energy efficiency. In this work, we report a novel Li‐O2 battery with high reversibility and good energy efficiency using a soluble catalyst combined with a hierarchical nanoporous air electrode. Through the porous three‐dimensional network of the air electrode, not only lithium ions and oxygen but also soluble catalysts can be rapidly transported, enabling ultra‐efficient electrode reactions and significantly enhanced catalytic activity. The novel Li‐O2 battery, combining an ideal air electrode and a soluble catalyst, can deliver a high reversible capacity (1000 mAh g?1) up to 900 cycles with reduced polarization (about 0.25 V).  相似文献   

14.
Of the various beyond‐lithium‐ion batteries, lithium–sulfur (Li‐S) batteries were recently reported as possibly being the closest to market. However, its theoretically high energy density makes it potentially hazardous under conditions of abuse. Therefore, addressing the safety issues of Li‐S cells is necessary before they can be used in practical applications. Here, we report a concept to build a safe and highly efficient Li‐S battery with a flame‐inhibiting electrolyte and a sulfur‐based composite cathode. The flame retardant not only makes the carbonates nonflammable but also dramatically enhances the electrochemical performance of the sulfur‐based composite cathode, without an apparent capacity decline over 750 cycles, and with a capacity greater than 800 mA h?1 g?1(sulfur) at a rate of 10 C.  相似文献   

15.
Herein we present a simple method for fabricating core–shell mesostructured CuO@C nanocomposites by utilizing humic acid (HA) as a biomass carbon source. The electrochemical performances of CuO@C nanocomposites were evaluated as an electrode material for supercapacitors and lithium‐ion batteries. CuO@C exhibits an excellent capacitance of 207.2 F g?1 at a current density of 1 A g?1 within a potential window of 0–0.46 V in 6 M KOH solution. Significantly, CuO electrode materials achieve remarkable capacitance retentions of approximately 205.8 F g?1 after 1000 cycles of charge/discharge testing. The CuO@C was further applied as an anode material for lithium‐ion batteries, and a high initial capacity of 1143.7 mA h g?1 was achieved at a current density of 0.1 C. This work provides a facile and general approach to synthesize carbon‐based materials for application in large‐scale energy‐storage systems.  相似文献   

16.
Energy storage devices, such as lithium‐ion batteries and supercapacitors, are required for the modern electronics. However, the intrinsic characteristics of low power densities in batteries and low energy densities in supercapacitors have limited their applications. How to simultaneously realize high energy and power densities in one device remains a challenge. Herein a fiber‐shaped hybrid energy‐storage device (FESD) formed by twisting three carbon nanotube hybrid fibers demonstrates both high energy and power densities. For the FESD, the energy density (50 mWh cm?3 or 90 Wh kg?1) many times higher than for other forms of supercapacitors and approximately 3 times that of thin‐film batteries; the power density (1 W cm?3 or 5970 W kg?1) is approximately 140 times of thin‐film lithium‐ion battery. The FESD is flexible, weaveable and wearable, which offers promising advantages in the modern electronics.  相似文献   

17.
To satisfy the rapid development of portable and wearable electronics, it is highly desired to make batteries with both high energy densities and flexibility. Although some progress has been made in recent decades, the available batteries share critical problems of poor energy storage capacity and low flexibility. Herein, we have developed a silicon–oxygen battery fiber with high energy density and ultra‐high flexibility by designing a coaxial architecture with a lithiated silicon/carbon nanotube hybrid fiber as inner anode, a polymer gel as middle electrolyte and a bare carbon nanotube sheet as outer cathode. The fiber showed a high energy density of 512 Wh kg−1 and could effectively work after bending for 20 000 cycles. These battery fibers have been further woven into flexible textiles for a large‐scale application.  相似文献   

18.
The flexible Li‐air battery (FLAB) with ultrahigh energy density is a hopeful candidate for flexible energy storage devices. However, most current FLAB operate in a pure oxygen atmosphere, which is limited by safety and corrosion issues from the metallic lithium anode and has thus greatly impeded the application of FLAB. Now, inspired by the protection effect of the umbrella, a stable hydrophobic composite polymer electrolyte (SHCPE) film with high flexibility, hydrophobicity, and stability was fabricated to protect the lithium anode. The SHCPE mitigated lithium corrosion and improved the capacity, rate performance, and cycle life (from 24 cycles to 95 cycles) of a battery in the ambient air. Based on the protection of SHCPE and the catalysis of MnOOH, the prepared pouch‐type FLAB displayed high flexibility, stable performances, long cycling life (180 cycles), and excellent safety; the battery can bear soaking in water, high temperature, and nail penetration.  相似文献   

19.
Flexible lithium/sulfur (Li/S) batteries are promising to meet the emerging power demand for flexible electronic devices. The key challenge for a flexible Li/S battery is to design a cathode with excellent electrochemical performance and mechanical flexibility. In this work, a flexible strap-like Li/S battery based on a S@carbon nanotube/Pt@carbon nanotube hybrid film cathode was designed. It delivers a specific capacity of 1145 mAh g−1 at the first cycle and retains a specific capacity of 822 mAh g−1 after 100 cycles. Moreover, the flexible Li/S battery retains stabile specific capacity and Coulombic efficiency even under severe bending conditions. As a demonstration of practical applications, an LED array is shown stably powered by the flexible Li/S battery under flattened and bent states. We also use the strap-like flexible Li/S battery as a real strap for a watch, which at the same time provides a reliable power supply to the watch.  相似文献   

20.
Sulfur/graphene nanocomposite material has been prepared by incorporating sulfur into the graphene frameworks through a melting process. Field‐emission scanning electron microscope analysis shows a homogeneous distribution of sulfur in the graphene nanosheet matrix. The sulfur/graphene nanocomposite exhibits a super‐high lithium‐storage capacity of 1580 mAh g?1 and a satisfactory cycling performance in lithium–sulfur cells. The enhancement of the reversible capacity and cycle life could be attributed to the flexible graphene nanosheet matrix, which acts as a conducting medium and a physical buffer to cushion the volume change of sulfur during the lithiation and delithiation process. Graphene‐based nanocomposites can significantly improve the electrochemical performance of lithium–sulfur batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号