首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
There have been extensive efforts to synthesize crystalline covalent triazine‐based frameworks (CTFs) for practical applications and to realize their potential. The phosphorus pentoxide (P2O5)‐catalyzed direct condensation of aromatic amide instead of aromatic nitrile to form triazine rings. P2O5‐catalyzed condensation was applied on terephthalamide to construct a covalent triazine‐based framework (pCTF‐1). This approach yielded highly crystalline pCTF‐1 with high specific surface area (2034.1 m2 g?1). At low pressure, the pCTF‐1 showed high CO2 (21.9 wt % at 273 K) and H2 (1.75 wt % at 77 K) uptake capacities. The direct formation of a triazine‐based COF was also confirmed by model reactions, with the P2O5‐catalyzed condensation reaction of both benzamide and benzonitrile to form 1,3,5‐triphenyl‐2,4,6‐triazine in high yield.  相似文献   

2.
A new strategy for the synthesis of a covalent triazine framework (CTF‐1) was introduced based on the cyclotrimerization reaction of 1,4‐dicyanobenzene using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) under ionothermal conditions. LiTFSI not only served as a catalyst, but also facilitated the in situ generation and homogeneous distribution of LiF particles across the framework. The hierarchical structure resulting upon integration of CTF‐LiF onto an airlaid‐paper (AP) offered unique features for lithium metal anodes, such as lithiophilicity from CTF, interface stabilization from LiF, and sufficient lithium storage space from AP. Based on this synergistic effect, the AP‐CTF‐LiF anode exhibited stable cycling performance even at a current density of 10 mA cm?2.  相似文献   

3.
《化学:亚洲杂志》2017,12(4):470-475
Significant progress has been made on the synthesis and application of mesoporous γ‐alumina. To date, little attention has been paid to the synthesis of microporous crystalline alumina. Here, fabrication of microporous crystalline γ‐alumina using a microporous covalent triazine framework (CTF‐1) as a template is described. Microporous crystalline γ‐alumina with a micro‐meso binary pore system was replicated by infiltration of aluminum nitrate into the micropores of the CTF‐1 template through a NH3/water‐vapor‐induced internal hydrolysis method, followed by thermal treatment, and subsequent removal of the CTF‐1 template with a 30 % H2O2 aqueous solution. The obtained crystalline γ‐alumina material exhibits a large surface area (349 m2 g−1) with micropore distribution centered at about 1.27 nm. Ru supported on microporous γ‐Al2O3 can be employed as catalyst for hydrolytic dehydrogenation of ammonia borane, and it exhibits high catalytic activity and good durability. This finding provides a new benchmark for preparing well‐defined crystalline microporous alumina materials by a template method, which can be applied in a wide range of fields.  相似文献   

4.
Covalent triazine frameworks (CTFs) are normally synthesized by ionothermal methods. The harsh synthetic conditions and associated limited structural diversity do not benefit for further development and practical large‐scale synthesis of CTFs. Herein we report a new strategy to construct CTFs (CTF‐HUSTs) via a polycondensation approach, which allows the synthesis of CTFs under mild conditions from a wide array of building blocks. Interestingly, these CTFs display a layered structure. The CTFs synthesized were also readily scaled up to gram quantities. The CTFs are potential candidates for separations, photocatalysis and for energy storage applications. In particular, CTF‐HUSTs are found to be promising photocatalysts for sacrificial photocatalytic hydrogen evolution with a maximum rate of 2647 μmol h−1 g−1 under visible light. We also applied a pyrolyzed form of CTF‐HUST‐4 as an anode material in a sodium‐ion battery achieving an excellent discharge capacity of 467 mAh g−1.  相似文献   

5.
The electrochemical oxygen reduction reaction (ORR) is an important cathode reaction of various types of fuel cells. The development of electrocatalysts composed only of abundant elements is a key goal because currently only platinum is a suitable catalyst for ORR. Herein, we synthesized copper‐modified covalent triazine frameworks (CTF) hybridized with carbon nanoparticles (Cu‐CTF/CPs) as efficient electrocatalysts for the ORR in neutral solutions. The ORR onset potential of the synthesized Cu‐CTF/CP was 810 mV versus the reversible hydrogen electrode (RHE; pH 7), the highest reported value at neutral pH for synthetic Cu‐based electrocatalysts. Cu‐CTF/CP also displayed higher stability than a Cu‐based molecular complex at neutral pH during the ORR, a property that was likely as a result of the covalently cross‐linked structure of CTF. This work may provide a new platform for the synthesis of durable non‐noble‐metal electrocatalysts for various target reactions.  相似文献   

6.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   

7.
Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon‐nanotube‐interpenetrated mesoporous nitrogen‐doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g?1 after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer‐sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm?2) with a high sulfur loading of approximately 5 mg cm?2, which is ideal for practical applications of the lithium–sulfur batteries.  相似文献   

8.
Small‐grained elemental sulfur is precipitated from sodium thiosulfate (Na2S2O3) in a carbon‐containing oxalic acid (HOOC?COOH) solution through a novel spray precipitation method. Surface area analysis, elemental mapping, and transmission electron micrographs revealed that the spray‐precipitated sulfur particles feature 11 times higher surface area compared to conventional precipitated sulfur, with homogeneous distribution in the carbon. Moreover, the scanning electron micrographs show that these high‐surface‐area sulfur particles are firmly adhered to and covered by carbon. This precipitated S–C composite exhibits high discharge capacity with about 75 % capacity retention. The initial discharge capacity was further improved to 1444 mA h g?1 by inserting a free‐standing single‐walled carbon nanotube layer in between the cathode and the separator. Moreover, with the help of the fixed capacity charging technique, 91.6 % capacity retention was achieved.  相似文献   

9.
A porous covalent triazine framework (CTF) consisting of both an electron‐deficient central triazine core and electron‐rich aromatic building blocks is reported. Taking advantage of the dual nature of the pore surface, bimodal functionality has been achieved. The electron deficiency in the central core has been utilized to address one of the pertinent problems in chemical industries, namely separation of benzene from its cyclic saturated congener, that is, cyclohexane. Also, by virtue of the electron‐rich aromatic rings with Lewis basic sites, aqueous‐phase chemical sensing of a nitroaromatic compound of highly explosive nature (2,4,6‐trinitrophenol; TNP) has been achieved. The present compound supersedes the performance of previously reported COFs in both the aspects. Notably, this reports the first example of pore‐surface engineering leading to bimodal functionality in CTFs.  相似文献   

10.
Bicarbonyl‐substituted sulfur ylide is a useful, but inert reagent in organic synthesis. Usually, harsh reaction conditions are required for its transformation. For the first time, it was demonstrated that a new, visible‐light photoredox catalytic annulation of sulfur ylides under extremely mild conditions, permits the synthesis of oxindole derivatives in high selectivities and efficiencies. The key to its success is the photocatalytic single‐electron‐transfer (SET) oxidation of the inert amide and acyl‐stabilized sulfur ylides to reactive radical cations, which easily proceeds with intramolecular C?H functionalization to give the final products.  相似文献   

11.
A three‐dimensional (3D) hierarchical carbon–sulfur nanocomposite that is useful as a high‐performance cathode for rechargeable lithium–sulfur batteries is reported. The 3D hierarchically ordered porous carbon (HOPC) with mesoporous walls and interconnected macropores was prepared by in situ self‐assembly of colloidal polymer and silica spheres with sucrose as the carbon source. The obtained porous carbon possesses a large specific surface area and pore volume with narrow mesopore size distribution, and acts as a host and conducting framework to contain highly dispersed elemental sulfur. Electrochemical tests reveal that the HOPC/S nanocomposite with well‐defined nanostructure delivers a high initial specific capacity up to 1193 mAh g?1 and a stable capacity of 884 mAh g?1 after 50 cycles at 0.1 C. In addition, the HOPC/S nanocomposite exhibits high reversible capacity at high rates. The excellent electrochemical performance is attributed exclusively to the beneficial integration of the mesopores for the electrochemical reaction and macropores for ion transport. The mesoporous walls of the HOPC act as solvent‐restricted reactors for the redox reaction of sulfur and aid in suppressing the diffusion of polysulfide species into the electrolyte. The “open” ordered interconnected macropores and windows facilitate transportation of electrolyte and solvated lithium ions during the charge/discharge process. These results show that nanostructured carbon with hierarchical pore distribution could be a promising scaffold for encapsulating sulfur to approach high specific capacity and energy density with long cycling performance.  相似文献   

12.
Sulfur is not normally considered a light‐emitting material, even though there have been reports of a dim luminescence of this compound in the blue‐to‐green spectral region. Now, it is shown how to make red‐emissive sulfur by a two‐step oxidation approach using elemental sulfur and Na2S as starting materials, with a high photoluminescence quantum yield of 7.2 %. Polysulfide is formed first and is partially transformed into Na2S2O3 in the first step, and then turns back to elemental S in the second step. The elevated temperature and relatively oxygen‐deficient environment during the second step transforms Na2S2O3 into Na2SO3 incorporated with oxygen vacancies, thus resulting in the formation of a solid‐state powder consisting of elemental S embedded in Na2SO3. It shows aggregation‐induced emission properties, attributed to the influence of oxygen vacancies on the emission dynamics of sulfur by providing additional lower energy states that facilitate the radiative relaxation of excitons.  相似文献   

13.
The reactions of aromatic compounds and elemental chalcogens catalyzed by a copper salt with molecular oxygen as an oxidant were carried out. The reaction of 3‐substituted imidazo[1,5‐a]pyridines and elemental sulfur in the presence of CuTC (copper(I) thiophenecarboxylate) gave the corresponding bisimidazopyridyl sulfides in good to quantitative yields. The reaction proceeded even under aerobic oxidation conditions. The use of a polar solvent was crucial for the reaction, and DMSO (dimethyl sulfoxide) in particular stimulated the reaction. The reaction could be applied to common aromatic compounds, such as N‐methyl indole and dialkyl anilines. The reaction of indole proceeded at the nucleophilic C3 position rather than at the acidic C2 position. In addition, the reaction of dialkyl anilines proceeded with an ortho, para orientation. The reactions of imidazopyridines and elemental selenium under similar conditions gave the corresponding bisimidazopyridyl diselenides along with bisimidazopyridyl monoselenides. The resulting diselenides were readily converted to the corresponding monoselenides with unreacted imidazopyridines under the same conditions. The reaction could be applied to the copolymerization of bifunctional bisimidazopyridines and elemental sulfur to give oligomeric copolymers in quantitative yield.  相似文献   

14.
The first trifluoromethylthiolation and [18F]trifluoromethylthiolation of alkyl electrophiles with in situ generated difluorocarbene in the presence of elemental sulfur and external (radioactive) fluoride ion is described. This transition‐metal‐free approach is high yielding, compatible with a variety of functional groups, and operated under mild reaction conditions. The conceptual advantage of this exogenous‐fluoride‐mediated transformation enables unprecedented syntheses of [18F]CF3S‐labeled molecules from most commonly used [18F]fluoride ions. The rapid radiochemical reaction time (≤1 min) and high functional‐group tolerance allow access to a variety of aliphatic [18F]CF3S compounds in high yields.  相似文献   

15.
The analog of triazine is used as the derivatizing reagent for enriching large‐scale acid (e.g. amino acid) containing a sulfur atom on the humic‐fraction‐modified silica gel in acetonitrile and desorbing from the adsorbent in hexane, respectively. The percent yield of the chemical derivatization under alkaline conditions, ranging from about 8 to almost 100 %, is pH dependent, and varies significantly among these examined analytes, believed to be due to the structure of the analyte, not the derivatizing reagent. The percentage of enrichment, not reproducible under an aqueous environment and independent of the type of triazine analogs, reaches almost 100 % in all cases. The force leading to the adsorption is the complexation between carboxyl groups on analyte and a humic‐fraction‐modified adsorbent based on the adsorption equilibrium results. Consequently, these results are not reproducible under ethyl ether or methanol environments due to the competition for binding sites from solvent molecules.  相似文献   

16.
A new family of energetic compounds, nitropyrazoles bearing a trinitromethyl moiety at the nitrogen atom of the heterocycle, was designed. The desirable high‐energy dense oxidizers 3,4‐dinitro‐ and 3,5‐dinitro‐1‐(trinitromethyl)pyrazoles were synthesized in good yields by destructive nitration of the corresponding 1‐acetonylpyrazoles. All of the prepared compounds were fully characterized by multinuclear NMR and IR spectroscopy, as well as by elemental analysis. Single‐crystal X‐ray diffraction studies show remarkably high density. Impact sensitivity tests and thermal stability measurements were also performed. All of the pyrazoles possess positive calculated heats of formation and exhibit promising energetic performance that is the range of 1,3,5‐trinitroperhydro‐1,3,5‐triazine and pentaerythritol tetranitrate. The new pyrazoles exhibit positive oxygen balance and are promising candidates for new environmentally benign energetic materials.  相似文献   

17.
A series of tertiary phosphine sulfides and selenides have been synthesized in excellent yields (88‐99%) via a three‐component reaction between secondary phosphines, electron‐rich alkenes (styrene, vinyl chalcogenides), and elemental sulfur or selenium, proceeding under solvent‐free conditions (80‐82°C, 4–44 h). The interaction occurs via initial oxidation of secondary phosphines with elemental sulfur or selenium followed by noncatalyzed anti‐Markovnikov addition of the generated R2P(E)H (E = S, Se) species to alkenes to afford the corresponding adducts with high chemo‐ and regioselectivity.  相似文献   

18.
Of the various beyond‐lithium‐ion batteries, lithium–sulfur (Li‐S) batteries were recently reported as possibly being the closest to market. However, its theoretically high energy density makes it potentially hazardous under conditions of abuse. Therefore, addressing the safety issues of Li‐S cells is necessary before they can be used in practical applications. Here, we report a concept to build a safe and highly efficient Li‐S battery with a flame‐inhibiting electrolyte and a sulfur‐based composite cathode. The flame retardant not only makes the carbonates nonflammable but also dramatically enhances the electrochemical performance of the sulfur‐based composite cathode, without an apparent capacity decline over 750 cycles, and with a capacity greater than 800 mA h?1 g?1(sulfur) at a rate of 10 C.  相似文献   

19.
The reaction of 4‐amino‐6‐methyl‐1,2,4‐triazine‐3‐thione‐5‐one, HAMTTO, with silver (I) nitrate in methanol led under deprotonation to the polymeric compound [(AMTTO)Ag]n. The coordination polymer {[Ag(HAMTTO)]ClO4}n ( 1 ) is synthesized from the reaction of the latter polymeric compound with perchloric acid. Both compounds were characterized by elemental analysis and IR spectroscopy. Single‐crystal X‐ray diffraction studies on compound 1 showed that HAMTTO acts as a bidentate ligand and chelates the silver atom via its hydrazine nitrogen atom and its sulfur atom. Crystal data for 1 at ?90 °C: space group P21, Z = 2, a = 629.3(1), b = 748.7(1), c = 1071.7(1) pm, β = 98.28(1)°, R1 = 0.0533.  相似文献   

20.
The disproportionation of elemental sulfur at moderate temperatures is investigated in the redox condensation involving o‐halonitrobenzenes 1 and benzylamines 2 . As a redox moderator, elemental sulfur plays the dual role of both electron donor and acceptor, generating its lowest and highest oxidation states: S?2 (sulfide equivalent) in benzothiazole 3 and S+6 (sulfate equivalent) in sulfamate 4 , and filling the electron gap of the global redox condensation process. Along with this process, a cascade of reactions of reduction of the nitro group of 1 , oxidation of the aminomethyl group of 2 , metal‐free aromatic halogen substitution, and condensation finally led to 2‐arylbenzothiazoles 3 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号