首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Two‐dimensional (2D) (hydro)oxide materials, that is, nanosheets, enable the preparation of advanced 2D materials and devices. The general synthesis route of nanosheets involves exfoliating layered metal (hydro)oxide crystals. This exfoliation process is considered to be time‐consuming, hindering their industrial‐scale production. Based on in situ exfoliation studies on the protonated layered titanate H1.07Ti1.73O4?H2O (HTO), it is now shown that ion intercalation‐assisted exfoliation driven by chemical reaction provides a viable and fast route to isolated nanosheets. Contrary to the general expectation, data indicate that direct exfoliation of HTO occurs within seconds after mixing of the reactants, instead of proceeding via a swollen state as previously thought. These findings reveal that ion intercalation‐assisted exfoliation driven by chemical reaction is a promising exfoliation route for large‐scale synthesis.  相似文献   

2.
The phase behavior of a natural nontronite clay was studied for size-selected particles by combining osmotic pressure measurements, visual observations under polarized light, and rheological experiments. In parallel, the positional and orientational correlations of the particles were analyzed by small-angle X-ray scattering. Aqueous suspensions of nontronite exhibit a true isotropic/nematic (I/N) transition that occurs before the sol/gel transition, for ionic strengths below 10(-3) M/L. In this region of the phase diagrams, the system appears to be purely repulsive. The I/N transition shifts toward lower volume fractions for increasing particle anisotropy, and its position in the phase diagram agrees well with the theoretical predictions for platelets. SAXS measurements reveal the presence of characteristic interparticular distances in the isotropic, nematic, and gel phases. The swelling law (separation distance vs swelling law) exhibits two regimes. For high volume fractions, the swelling law is one-dimensional as in layered systems and reveals the presence of isolated platelets. At lower volume fraction, distances scale as phi(-1/3), indicating isotropic volumic swelling. Finally, the experimental osmotic pressure curves can be satisfactorily reproduced by considering the interparticle distances between two charged planes whose effective charge is around 10% of the structural charge.  相似文献   

3.
Traditional lithium‐ion batteries that are based on layered Li intercalation electrode materials are limited by the intrinsically low theoretical capacities of both electrodes and cannot meet the increasing demand for energy. A facile route for the synthesis of a new type of composite nanofibers, namely carbon nanofibers decorated with molybdenum disulfide sheets (CNFs@MoS2), is now reported. A synergistic effect was observed for the two‐component anode, triggering new electrochemical processes for lithium storage, with a persistent oxidation from Mo (or MoS2) to MoS3 in the repeated charge processes, leading to an ascending capacity upon cycling. The composite exhibits unprecedented electrochemical behavior with high specific capacity, good cycling stability, and superior high‐rate capability, suggesting its potential application in high‐energy lithium‐ion batteries.  相似文献   

4.
Two‐dimensional (2D) materials are commonly prepared by exfoliating bulk layered van der Waals crystals. The creation of synthetic 2D materials from bottom‐up methods is an important challenge as their structural flexibility will enable chemists to tune the materials properties. A 2D material was assembled using C60 as a polymerizable monomer. The C60 building blocks are first assembled into a layered solid using a molecular cluster as structure director. The resulting hierarchical crystal is used as a template to polymerize its C60 monolayers, which can be exfoliated down to 2D crystalline nanosheets. Derived from the parent template, the 2D structure is composed of a layer of inorganic cluster, sandwiched between two monolayers of polymerized C60. The nanosheets can be transferred onto solid substrates and depolymerized by heating. Electronic absorption spectroscopy reveals an optical gap of 0.25 eV, narrower than that of the bulk parent crystalline solid.  相似文献   

5.
The solid‐state three‐dimensional ordering of polyaniline–dopant complexes was investigated with four structurally different sulfonic acid dopants. The doped materials were produced in three different ways: polyaniline emeraldine base doped with sulfonic acid (aqueous route), in situ polymerization at the organic–water solvent interface (interfacial route), and in situ polymerization in organic and aqueous solvent mixtures (bilayer route). p‐Toluenesulfonic acid (PTSA), 5‐sulfosalicilic acid (SSA), camphorsulfonic acid (CSA), and dodecylbenzene sulfonic acid (DBSA) were employed as dopants. The conductivity of the aqueous‐route samples showed 10 and 100 times higher conductivity than the interfacial and bilayer routes, respectively. WXRD studies suggested that the crystallinity of the doped samples was dependent on both the structure of the dopants and the polymerization techniques. DBSA increases the polyaniline interplanar distance and produced highly crystalline materials via the aqueous and bilayer routes but failed with the interfacial route because of poor solubility in water. CSA, PTSA, and SSA produced highly crystalline samples by the interfacial route but failed with the aqueous (except for CSA) and bilayer routes. SEM analysis revealed that the doped materials of the interfacial route had excellent continuous morphology and uniform submicrometer‐size particle distributions in comparison with those of the aqueous and bilayer routes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1321–1331, 2005  相似文献   

6.
刘春霞 a  侯万国a  b  李妍a  李丽芳c 《中国化学》2008,26(10):1806-1810
采用共沉淀法把抗癌药物喜树碱(Camptothecin, CPT)插入层状双金属氢氧化物(layered double hydroxide, LDH)层间, 合成了CPT-LDH纳米杂化物。结果表明,在CPT-LDH纳米杂化物中,CPT在层间的排布方式有两种,即平行于层板的单层排列和垂直于层板的双层排列;缓释研究表明,CPT-LDH在pH 7.5的磷酸缓冲液中具有明显的缓释效果,其释放速率较相同pH值时CPT和LDH物理混合物的释放速率明显降低;考察了CPT-LDH的药物释放机理,在 pH 7.5的缓冲溶液中,释放过程受粒内扩散过程控制;CPT-LDH纳米杂化物的释放动力学符合准一级动力学过程。  相似文献   

7.
MgAlCO3 type layered double hydroxides (LDHs) with Mg/Al ratios ranging from 2 to 5 were synthesized by coprecipitation. Composites with sodium oleate/LDH were prepared by ion exchange and reconstruction of the LDH in sodium oleate solution. The amount of sodium oleate in the composites prepared by this reconstruction method was higher than that in samples prepared by the ion-exchange method. The basal spacings of the LDHs increased to 3.9 and 1.8 nm after synthesis of the composites, these spacings being in good agreement with models based on the assumption that the oleate ions are intercalated as bilayer and/or micelle structures, and as monolayers in the LDH interlayers, respectively. The number of sorbed oleate ions was higher than calculated from the anion-exchange capacities of the LDHs in most of the samples, increasing as the Mg/Al ratios of the LDHs were increased from 2 to 5. These results suggest that the oleate ions are present not only in the interlayers but also on the surfaces of the LDH particles. The acid-resistant properties of the composites were found to be much higher than for the pure LDHs. It is thus confirmed that the surfaces of the LDH particles in the composites are mostly covered with sorbed oleate ions and that the composites are good candidates as drug delivery materials.  相似文献   

8.
The controllable synthesis of well‐ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. Here the solvothermal synthesis of two structurally analogous 5‐coordinate organosilicate complexes through a novel transesterification mechanism is reported. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction‐quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self‐assemble into a dimeric asymmetric secondary BU via strong Na+?O2? ionic bonds. The designed one‐pot synthesis is straightforward, robust, and efficient, leading to a well‐ordered (10ī)‐parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counter‐ions as a result of unique atomic arrangement in its structure. However, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7 m2 g?1 for the pyrolyzed intrinsic and B‐assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal–organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity.  相似文献   

9.
Physical exfoliation of layered precursors is one of the most prevailing techniques to prepare two‐dimensional (2D) crystals, which, however, is considered to be intrinsically inapplicable to non‐layered bulks. Now, plane cleavage differentiation is identified in metallic magnesium at cryogenic temperature (CT), and a cryogenic exfoliation strategy of non‐layered magnesium into 2D crystals is developed. The cleavage anisotropy of the Mg lattice in response to the external mechanical stress originates from the CT‐induced specific inactivation of basal slip, which results in the basal cleavage perpendicular to c axis. The exfoliated novel 2D Mg crystals exhibit remarkable localized surface plasmon resonances, holding great promise for the applications in harvesting and converting solar energy. Beyond creating a new member for the burgeoning 2D family, this study may provide a useful tool for the physical exfoliations of various non‐layered materials.  相似文献   

10.
The order in molecular monolayers is a crucial aspect for their technological application. However, the preparation of defined monolayers by spin‐coating is a challenge, since the involved processes are far from thermodynamic equilibrium. In the work reported herein, the dynamic formation of dioctyl‐benzothienobenzothiophene monolayers is explored as a function of temperature by using X‐ray scattering techniques and atomic force microscopy. Starting with a disordered monolayer after the spin‐coating process, post‐deposition self‐reassembly at room temperature transforms the initially amorphous layer into a well‐ordered bilayer structure with a molecular herringbone packing, whereas at elevated temperature the formation of crystalline islands occurs. At the temperature of the liquid‐crystalline crystal–smectic transition, rewetting of the surface follows resulting in a complete homogeneous monolayer. By subsequent controlled cooling to room temperature, cooling‐rate‐dependent kinetics is observed; at rapid cooling, a stable monolayer is preserved at room temperature, whereas slow cooling causes bilayer structures. Increasing the understanding and control of monolayer formation is of high relevance for achieving ordered functional monolayers with defined two‐dimensional packing, for future applications in the field of organic electronics.  相似文献   

11.
Thin films (monolayer and bilayer) of cylinder forming polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) were shear aligned by the swelling and deswelling of a crosslinked PDMS pad that was physically adhered to the film during solvent vapor annealing. The nanostructures formed by self‐assembly were exposed to ultraviolet‐ozone to partially oxidize the PDMS, followed by calcination in air at 500 °C. In this process, the PS segments were fully decomposed, while the PDMS yielded silica nanostructures. The highly aligned PDMS cylinders were thus deposited as silica nanolines on the silicon substrate. Using a bilayer film, the center‐to‐center distance of these features were effectively halved from 38 to 19 nm. Similarly, by sequential shear‐alignment of two distinct layers, a rhombic array of silica nanolines was fabricated. This methodology provides a facile route to fabricating complex topographically patterned nanostructures. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1058–1064  相似文献   

12.
Bilayer structures are formed by approaching two liquid surfaces with phospholipid monolayers, which are brought into contact by oblique drop impact on a liquid surface. Asymmetric bilayers can be produced by the coupling of drop and target monolayers. In contrast, symmetric bilayers or multilayers are formed by collapse of the compressed target monolayer. We show that under all studied conditions bilayer/multilayer synthesis takes place. The experimental conditions for the synthesis of asymmetric or symmetric bilayers are described quantitatively in terms of the surface rheological (surface elasticity and dilational viscosity) and the hydrodynamical parameters (Weber number and impact angle). The composition and mechanical properties of the phospholipid monolayers strongly influences the patterns of drop impact and the bilayer/multilayer formation. Cholesterol stiffens unsaturated phospholipid monolayers and fluidifies saturated monolayers. All monolayers form asymmetric vesicle-like structures, which are stable in the aqueous medium. Additionally, unsaturated phospholipid monolayers without cholesterol form symmetric vesicles by folding parts of the target monolayer. Sufficient presence of cholesterol in unsaturated phospholipid monolayers inhibits the folding of the target monolayer and the subsequent formation of symmetric bilayers. The rheological properties of saturated and unsaturated phospholipid monolayers and their mixtures with cholesterol are discussed. Based on drop impact results it is shown that the state of a so far undefined region in the DPPC/cholesterol phase diagram is a fluid phase.  相似文献   

13.
Characterizing and controlling the interlayer orientations and stacking orders of two‐dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor‐phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA′ and AB stacking) in as‐grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga‐terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals.  相似文献   

14.
Topochemical transformations of layered materials CaX2 (X=Si, Ge) are the method of choice for the high‐yield synthesis of pristine, defect‐free two‐dimensional systems silicane and germanane, which have advanced electronic properties. Based on solid‐state dispersion‐corrected calculations, mechanisms for such transformations are elucidated that provide an in‐depth understanding of phase transition in these layered materials. While formation of such layered materials is highly favorable for silicane and germanane, a barrier of 1.2 eV in the case of graphane precludes its synthesis from CaC2 topochemically. The energy penalty required for distorting linear acetylene into a trans‐bent geometry accounts for this barrier. In contrast it is highly favorable in the heavier analogues, resulting in barrierless topochemical generation of silicane and germanane. Photochemical generation of the trans‐bent structure of acetylene in its first excited state (S1) can directly generate graphane through a barrierless condensation. Unlike the buckled structure of silicene, the phase‐h of CaSi2 with perfectly planar silicene layers exhibits the Dirac cones at the high symmetry points K and H. Interestingly, topochemical acidification of the cubic phase of calcium carbide is predicted to generate the previously elusive platonic hydrocarbon, tetrahedrane.  相似文献   

15.
A biodegradable polymer network hydrogel system with both hydrophilic and hydrophobic components was synthesized and characterized. The hydrophilic and hydrophobic components were dextran and poly(D,L )lactic acid (PDLLA), respectively. These two polymers were chemically modified for incorporating unsaturated groups for subsequent UV crosslinking to generate a hydrogel with a three‐dimensional network structure. The effects of the reaction conditions on the synthesis of a dextran derivative of allyl isocyanate (dex‐AI) were studied. All newly synthesized materials were characterized by Fourier transform infrared and NMR. The swelling property of the hydrogels was studied in buffer solutions of different pHs. The results of this study showed that a wide‐range swelling property was obtained by changes in the dex‐AI/PDLLA composition ratio, the type and degree of unsaturated groups incorporated into dextran, and the UV photocrosslinking time. The solvent extraction effect on the swelling property of the hydrogels was also studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2392–2404, 2000  相似文献   

16.
Polymer/layered silicate nanocomposites belong to one of the most promising group of materials of the past few decades and most probably for the near future. Following the pioneering works of Toyota Research Group in the 1980s, the interest on these materials increased rapidly and research is now being carried out world wide, using all kinds of polymers as base material.In this present study, the aim was to investigate the effects of several different production parameters; on the morphology of resol type phenol formaldehyde based layered silicate nanocomposites produced by mixing and casting. For this purpose; two different liquid resol type phenolic resins (PF76 and PF76TD), two different curing methods (heat cure route and acid cure route), two different montmorillonite clays (unmodified Cloisite Na+ and modified Rheospan), two different clay sources (Wyoming-USA and Tokat-Turkey), and five different clay amounts (0.5%, 1%, 1.5%, 3%, 10%) were used.XRD, SEM, TEM analyses and mechanical tests indicated that resol type phenolic resins lead to better structures when they were modified with ethylene glycol and cured by the use of an acidic curing agent. It was also observed that use of modified clay with no more than 1.5 wt% in the phenolic matrix lead to certain degree of exfoliation consequently better structure and higher mechanical performance.  相似文献   

17.
水滑石(LDHs)是一种阴离子黏土材料,由于其主体层板厚度的可调性,使其在光/电催化、电池、超级电容器、传感器以及生物医药等领域都具有广泛应用。降低层厚至单层可使材料的物理化学性质发生根本改变,从而优化催化性能。近期研究表明,利用自上而下,自下而上的方法,可以实现单层LDHs类材料的合成,但是受限于产量(g级)以及成本设备等问题,目前规模化制备高质量单层LDHs类材料还没有工业案例。成核晶化隔离法是目前唯一规模化合成纳米LDHs的工业化方法,具有成本低,产量可吨级放大等优点。本综述从合成方法、表征手段、应用三个角度讨论了单层及超薄LDHs的精准调控,详细论述了近期关于单层及超薄LDHs合成突破以及LDHs的规模化生产进展,并对其性能进行了总结,为后续设计高性能单层LDHs提供思路。  相似文献   

18.
The swelling of dextran gels (Sephadex) in salt solutions with a water activity of 0.937, compared with the swelling in pure water, exhibited anion specificity as evidenced by an increased swelling ratio in the following order: Na2SO4 < H2O < NaCl < NaSCN. The swelling ratio showed a good linear correlation with the osmotic pressure of dextran (500 kD) in these solutions. The salt‐concentration difference (imbalance) between the polymer‐solution side of the membrane and the polymer‐free permeate side during the osmotic‐pressure measurements positively correlated with the effect of the salt on the polymer osmotic pressure. These phenomena conform to Hofmeister‐type (or lyotropic) behavior. The diminishing augmentation of dextran osmotic pressure and the change in the salt‐concentration imbalance with rising NaSCN concentration imply a positive preferential interaction and adsorption of the salt onto the polymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2740–2750, 2001  相似文献   

19.
This communication describes a new synthetic approach to one- (1D) and two-dimensional (2D) NbSe2 nanoscale materials using soft chemical methods. Our one-pot synthesis provides a direct route to control the morphology of nanostructures that can exhibit complex electronic properties, and can produce layered, nanocrystalline materials in high yield.  相似文献   

20.
Much attention has recently been focused on the synthesis and application of graphene analogues of layered nanomaterials owing to their better electrochemical performance than the bulk counterparts. We synthesized graphene analogue of 3D MoS2 hierarchical nanoarchitectures through a facile hydrothermal route. The graphene‐like MoS2 nanosheets are uniformly dispersed in an amorphous carbon matrix produced in situ by hydrothermal carbonization. The interlaminar distance between the MoS2 nanosheets is about 1.38 nm, which is far larger than that of bulk MoS2 (0.62 nm). Such a layered architecture is especially beneficial for the intercalation and deintercalation of Li+. When tested as a lithium‐storage anode material, the graphene‐like MoS2 hierarchical nanoarchitectures exhibit high specific capacity, superior rate capability, and enhanced cycling performance. This material shows a high reversible capacity of 813.5 mAh g?1 at a current density of 1000 mA g?1 after 100 cycles and a specific capacity as high as 600 mAh g?1 could be retained even at a current density of 4000 mA g?1. The results further demonstrate that constructing 3D graphene‐like hierarchical nanoarchitectures can effectively improve the electrochemical performance of electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号