首页 | 本学科首页   官方微博 | 高级检索  
     检索      

单层类水滑石纳米片的可控合成及规模生产展望
作者单位:
摘    要:水滑石(LDHs)是一种阴离子黏土材料,由于其主体层板厚度的可调性,使其在光/电催化、电池、超级电容器、传感器以及生物医药等领域都具有广泛应用。降低层厚至单层可使材料的物理化学性质发生根本改变,从而优化催化性能。近期研究表明,利用自上而下,自下而上的方法,可以实现单层LDHs类材料的合成,但是受限于产量(g级)以及成本设备等问题,目前规模化制备高质量单层LDHs类材料还没有工业案例。成核晶化隔离法是目前唯一规模化合成纳米LDHs的工业化方法,具有成本低,产量可吨级放大等优点。本综述从合成方法、表征手段、应用三个角度讨论了单层及超薄LDHs的精准调控,详细论述了近期关于单层及超薄LDHs合成突破以及LDHs的规模化生产进展,并对其性能进行了总结,为后续设计高性能单层LDHs提供思路。

关 键 词:水滑石  厚度  单层  超薄  缺陷  规模化制备  
收稿时间:2019-12-02

Controllable Synthesis and Scale-up Production Prospect of Monolayer Layered Double Hydroxide Nanosheets
Authors:Tian Li  Xiaojie Hao  Sha Bai  Yufei Zhao  Fei Yu-Song
Institution:
Abstract:As a type of layered material, layered double hydroxides (LDHs) exhibit high development potential and application prospects, and have been used widely in adsorbents, catalysts, ion exchangers, flame retardants, biology, sensing, medicine, and other fields. With the continued development in nanoscience and nanotechnology, it has been established that monolayer LDHs contain an abundance of exposed highly unsaturated coordination sites, and so display unexpected functionality. However, due to the higher charge density of the LDHs layers, the strong interactions between the layers, and the hydroxyl groups on the surface of the layers, the result is a compact stacking of the layers. Consequently, it is still a great challenge to synthesize high-quality monolayer LDHs. Despite various methods of preparing monolayer LDHs having been developed, which can generally be divided into top-down and bottom-up strategies, most of these approaches have used organic solvents, which take a long time to achieve the exfoliation of LDHs, or require special equipment. Furthermore, high costs and the low yields have prevented large-scale production of monolayer LDHs. With the rapid development of the national economy, the industrial preparation of monolayer LDHs has become an inescapable trend. The separate nucleation and ageing method for the preparation of nanostructured LDHs is a feasible method, the key features of which are a very rapid mixing and nucleation process in a colloid mill, followed by a separate ageing process. This method has been successfully applied to a pilot plant in China for the industrial-scale synthesis of LDHs materials. It should be noted that the particle size distribution of LDHs obtained by this method can be well controlled. Moreover, the synthesis operation is simple, and quick (with a short duration of only several minutes). Through new in-depth technology studies on two-dimensional layered materials, large-scale preparation, and industrial application of monolayer LDHs will certainly be increasingly realized, and ultimately transformed into economic benefits. In this review, we summarize the synthesis method of monolayer LDHs, describe the necessary characterization technologies that have been used to study monolayers LDHs nanosheets, such as X-ray diffraction, transmission electron microscopy, and atomic force microscopy. Then we discuss the applications in various fields, such as photocatalysis, electrocatalysis, batteries, supercapacitors, membrane materials, and biomedical fields. We further discuss the recent breakthroughs in the synthesis of monolayer and ultrathin LDHs and the advance of production scale-up of LDHs. Finally, the performance of monolayer/ultrathin LDHs is summarized to provide a basis for the ensuing design of high-performance monolayer LDHs.
Keywords:Layered double hydroxides  Thickness  Monolayer  Ultrathin  Defect  Scale-up production  
本文献已被 CNKI 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号