首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
In this article, non‐linear propagation of ingoing and outgoing electrostatic waves on the ion time scale in an unmagnetized, non‐relativistic electron‐ion (ei) plasma in the presence of warm ions, ion kinematic viscosity, and trapped Maxwellian electrons was examined in a non‐planar geometry. In the weak non‐linearity limit, modified soliton and shock equations were derived with the inclusion of electron trapping in cylindrical and spherical geometries. The finite difference method was used to solve all these equations in the non‐planar geometries using the planar versions of these equations as an initial input. The results were compared with their counterparts with quadratic non‐linearity and the main differences were expounded. It was shown that the spatio‐temporal scales over which the shocks form for the non‐planar trapped Burgers equation are much shorter by comparison with the shocks admitted by the non‐planar trapped Korteweg de Vries Burgers equation. It was also found that unlike their non‐linear shock counterparts, the solitary structures admitted by the non‐planar trapped Korteweg de Vries equation exhibit a phase shift.  相似文献   

2.
An investigation has been made on heavy ion‐acoustic (HIA) nonplanar shocks and solitons in an unmagnetized, collisionless, strongly coupled plasma whose constituents are strongly correlated adiabatic inertial heavy ions, weakly correlated nonextensive distributed electrons and Maxwellian light ions. By using appropriate nonlinear equations for our strongly coupled plasma system and the well‐known reductive perturbation technique, a modified Burgers (mB) equation and a modified Korteweg‐de Vries (mK‐dV) equation have been derived. They are also numerically solved in order to investigate the basic features (viz. polarity, amplitude, width, etc.) of cylindrical and spherical shock/solitary waves in such a strongly coupled plasma system. The roles of heavy ion dynamics, nonextensivity of electrons, and other plasma parameters arised in this investigation have significantly modified the basic features of the cylindrical and spherical HIA solitary and shock waves. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear phenomena associated with the cylindrical and spherical HIA waves both in space and laboratory plasmas. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A nonlinear propagation of cylindrical and spherical modified ion-acoustic (mIA) waves in an unmagnetized, collisionless, relativistic, degenerate multi-species plasma has been investigated theoretically. This plasma system is assumed to contain non-relativistic degenerate light ions, both non-relativistic and ultra-relativistic degenerate electron and positron fluids, and arbitrarily charged static heavy ions. The restoring force is provided by the degenerate pressures of the electrons and positrons, whereas the inertia is provided by the mass of ions. The arbitrarily charged static heavy ions participate only in maintaining the quasi-neutrality condition at equilibrium. The modified Burgers (mB) equation is derived by using reductive perturbation technique and numerically analyzed to identify the basic features of mIA shock structures. The basic characteristics of mIA shock waves are found to be significantly modified by the effects of degenerate pressures of electron, positron, and ion fluids, their number densities, and various charge state of heavy ions. The implications of our results to dense plasmas in astrophysical compact objects (e.g., non-rotating white dwarfs, neutron stars, etc.) are briefly discussed.  相似文献   

4.
Cylindrical and spherical dust-electron-acoustic(DEA) shock waves and double layers in an unmagnetized,collisionless,complex or dusty plasma system are carried out.The plasma system is assumed to be composed of inertial and viscous cold electron fluids,nonextensive distributed hot electrons,Maxwellian ions,and negatively charged stationary dust grains.The standard reductive perturbation technique is used to derive the nonlinear dynamical equations,that is,the nonplanar Burgers equation and the nonplanar further Burgers equation.They are also numerically analyzed to investigate the basic features of shock waves and double layers(DLs).It is observed that the roles of the viscous cold electron fluids,nonextensivity of hot electrons,and other plasma parameters in this investigation have significantly modified the basic features(such as,polarity,amplitude and width) of the nonplanar DEA shock waves and DLs.It is also observed that the strength of the shock is maximal for the spherical geometry,intermediate for cylindrical geometry,while it is minimal for the planar geometry.The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear phenomena associated with the nonplanar DEA waves in both space and laboratory plasmas.  相似文献   

5.
Two‐dimensional (2D) magnetosonic wave propagation in magnetized quantum dissipative plasmas is studied. The plasma system is comprised of inertial ions, inertia‐less electrons, and positrons. The multi‐fluid quantum hydrodynamic model is used, in which quantum statistical and quantum tunnelling effects of electrons and positrons are included. Reductive perturbation analysis is performed to derive the Zabolotskaya–Khokhlov equation for the 2D propagation of a magnetosonic shock wave in a magnetized qauntum plasma. The effects of varying the different plasma parameters such as positron density and magnetic field intensity on the propagation characteristics of magnetosonic shock waves are discussed with non‐relativistic degenerate plasma parameters in astrophysical plasma situations.  相似文献   

6.
Cylindrical and spherical (nonplanar) solitary waves (SWs) and double layers (DLs) in a multi-ion plasma system (containing inertial positively as well as negatively charged ions, non-inertial degenerate electrons, and negatively charged static dust) are studied by employing the standard reductive perturbation method. The modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves is derived, and its nonplanar SWs and DLs solutions are numerically analyzed. The parametric regimes for the existence of SWs, which are associated with both positive and negative potential, and DLs which are associated with negative potential, are obtained. The basic features of nonplanar DIA SWs, and DLs, which are found to be different from planar ones, are also identified.  相似文献   

7.
Electron-acoustic shock waves (EASWs) in an unmagnetized four-component plasma (containing hot electrons and positrons following the q-nonextensive distribution, cold mobile viscous electron fluid, and immobile positive ions) are studied in nonplanar (cylindrical and spherical) geometry. With the help of the reductive perturbation method, the modified Burgers equation is derived. Analytically, the effects of nonplanar geometry, nonextensivity, relative number density and temperature ratios, and cold electron kinematic viscosity on the basic properties (viz. amplitude, width, speed, etc.) of EASWs are discussed. It is examined that the EASWs in nonplanar geometry significantly differ from those in planar geometry. The results of this investigation can be helpful in understanding the nonlinear features of EASWs in various astrophysical plasmas.  相似文献   

8.
Properties of nonplanar (viz. cylindrical and spherical) dust ion-acoustic (DIA) solitary and shock waves propagating in a dusty plasma containing charge fluctuating stationary dust, inertial warm ions, and non-isothermal electrons following a vortex-like distribution, are investigated by the reductive perturbation method. It has been shown that all the basic features of the DIA solitary and shock waves are significantly modified by the effects of vortex-like electron distribution, dust charge fluctuation, and nonplanar cylindrical and spherical geometries. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.  相似文献   

9.
The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dust grains) are investi- gated both numerically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The effects of superthermal bi-kappa electrons and ion kinematic viscosity, which are found to modify the basic features of DIA shock waves significantly, are briefly discussed.  相似文献   

10.
A general theory for nonlinear propagation of one dimensional modified ion-acoustic waves in an unmagnetized electron-positron-ion (e-p-i) degenerate plasma is investigated. This plasma system is assumed to contain relativistic electron and positron fluids, non-degenerate viscous positive ions, and negatively charged static heavy ions. The modified Burgers and Gardner equations have been derived by employing the reductive perturbation method and analyzed in order to identify the basic features (polarity, width, speed, etc.) of shock and double layer (DL) structures. It is observed that the basic features of these shock and DL structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers equations. The implications of these results in space and interstellar compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are also briefly mentioned.  相似文献   

11.
A rigorous theoretical investigation has been made to study the existence and basic features of the ion-acoustic (IA) shock structures in an unmagnetized, collisionless multi-ion plasma system (containing degenerate electron fluids, inertial positively as well as negatively charged ions, and arbitrarily charged static heavy ions). This investigation is valid for both non-relativistic and ultra-relativistic limits. The reductive perturbation technique has been employed to derive the modified Burgers equation. The solution of this equation has been numerically examined to study the basic properties of shock structures. The basic features (speed, amplitude, width, etc.) of these electrostatic shock structures have been briefly discussed. The basic properties of the IA shock waves are found to be significantly modified by the effects of arbitrarily charged static heavy ions and the plasma particle number densities. The implications of our results in space and interstellar compact objects like white dwarfs, neutron stars, black holes, and so on have been briefly discussed.  相似文献   

12.
A theoretical investigation has been carried out for exploring different features of ion-acoustic solitary and shock waves in a three-component magnetized plasma containing a mixture of thermal and nonthermal (energetic) inertialess electrons, warm inertial ions, and positively charged stationary dust particles. The standard Korteweg-de Vries (Burgers) equation has been derived by employing the reductive perturbation method, and its solitary (shock) wave solution has been derived and examined analytically as well as numerically. The latter exhibits characteristic properties (amplitude, width, speed, and polarity) of the ion-acoustic solitary and shock waves. It has been shown that the ion-acoustic solitary and shock waves are significantly modified by different plasma parameters (viz. parameter measuring the ratio of dust charge density to ion charge density, parameter measuring the fraction of energetic electrons, parameter measuring ion or electron temperature, and the external magnetic field). The present investigation may help in understanding the physics of various nonlinear phenomena formed in many space plasma systems, (viz. earth's mesosphere, solar wind, and cometary tails) and laboratory devices (laboratory experiments of Samarian et al., Phys. rev. E. 64 , 056407 [2001] and of Fortov et al., New J. Physics 5 , 102 [2003]).  相似文献   

13.
The nonlinear propagation of cylindrical and spherical modified ion-acoustic (mIA) waves in an unmagnetized, collisionless, relativistic, degenerate multispecies plasma has been investigated theoretically. This plasma system is assumed to contain both relativistic degenerate electron and positron fluids, nonrelativistic degenerate positive and negative ions, and positively charged static heavy ions. The restoring force is provided by the degenerate pressures of the electrons and positrons, whereas the inertia is provided by the mass of positive and negative ions. The positively charged static heavy ions participate only in maintaining the quasi-neutrality condition at equilibrium. The nonplanar K-dV and mK-dV equations are derived by using reductive perturbation technique and numerically analyzed to identify the basic features (speed, amplitude, width, etc.) of mIA solitary structures. The basic characteristics of mIA solitary waves are found to be significantly modified by the effects of degenerate pressures of electron, positron, and ion fluids, their number densities, and various charge states of heavy ions. The implications of our results to dense plasmas in astrophysical compact objects (e.g., nonrotating white dwarfs, neutron stars, etc.) are briefly mentioned.  相似文献   

14.
The longitudinal response functions are used to generalize the dispersion properties of electron acoustic waves (EAWs) in the presence of quantum recoil, for isotropic, non‐relativistic, degenerate/non‐degenerate plasmas. In order to study the EAWs, the constituents of non‐degenerate (thermal) plasma are considered to be of two groups of electrons having different number density and temperature, namely the cold electrons and the hot electrons. Similarly in degenerate (Fermi) plasma the two population of electrons are considered to be the thinly populated and the thickly populated electrons. The sparsely populated electrons are termed as cold electrons while the densely populated ones are termed as hot electrons. The ions are stationary which form the neutralizing background. The absorption coefficients for Landau damping with the inclusion of the quantum recoil in both plasmas are calculated and discussed. The results are discussed in the context of laser‐produced plasma.  相似文献   

15.
The nonlinear properties of small amplitude electron-acoustic (EA) solitary and shock waves in a homogeneous system of unmagnetized collisionless plasma with nonextensive distribution for hot electrons have been investigated. A reductive perturbation method used to obtain the Kadomstev-Petviashvili-Burgers equation. Bifurcation analysis has been discussed for non-dissipative system in the absence of Burgers term and reveals different classes of the traveling wave solutions. The obtained solutions are related to periodic and soliton waves and their behavior are shown graphically. In the presence of the Burgers term, the EXP-function method is used to solve the Kadomstev-Petviashvili-Burgers equation and the obtained solution is related to shock wave. The obtained results may be helpful in better conception of waves propagation in various space plasma environments as well as in inertial confinement fusion laboratory plasmas.  相似文献   

16.
The propagation properties of planar and non‐planar electron acoustic shock waves composed of stationary ions, cold electrons, and q‐non‐extensive hot electrons and positrons are studied in unmagnetized electron‐positron‐ion plasma. In this model, the Korteweg‐de Vries Burgers equation is obtained in the planar and non‐planar coordinates. We have investigated the combined action of the dissipation, non‐extensivity, density ratio of hot to cold electrons, concentration of positrons, and temperature difference of cold electrons, hot electrons, and positrons. It was found that the amplitude of shock wave in e‐p‐i plasma increases when the positron concentration and temperature increase. The same effect is observed in the case of kinematic viscosity η. Furthermore, it is noticed that spherical wave moves faster in comparison to the shock waves in cylindrical geometry. This difference arises due to the presence of the geometry term m/2τ. It should be noted that the contribution of the geometry factor comes through the continuity equation. Results of our work may be helpful to illustrate the different properties of shock wave features in different astrophysical and space environments like supernova, polar regions, and in the vicinity of black holes.  相似文献   

17.
A theoretical investigation has been carried out on the propagation of non-linear ion-acoustic shock waves (IASHWs) in a magnetized degenerate quantum plasma system composed of inertial non-relativistic positively charged light and heavy ions, inertialess non-relativistically or ultra-relativistically degenerate electrons and positrons. The reductive perturbation method has been employed to derive the Burgers' equation. It has been observed that under consideration, our plasma model supports only positive potential shock structure. It is also found that the amplitude and steepness of the IASHWs have been significantly modified by the variation of ion kinematic viscosity, oblique angle, number density, and charge state of the plasma species. The results of our present investigation will be helpful for understanding the propagation of IASHWs in white dwarfs and neutron stars.  相似文献   

18.
Heavy-ion-acoustic (HIA) waves in an unmagnetized collisionless plasma system comprising superthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions have been investigated both numerically and analytically. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and Burgers (BG) equations. The parametric regimes for the existence of both the positive and negative solitary and shock waves have been obtained. The effects of adiabaticity of heavy ions and superthermality of electrons, which are found to notably modify the fundamental features (viz. polarity, amplitude, phase speed, etc.) of HIA solitary and shock waves, are precisely studied. The results of our theoretical investigation can be applicable to understand the characteristics and basic nonlinear structures of HIA waves both in space and laboratory plasma situations.  相似文献   

19.
Zakharov–Kuznetsov–Burgers (ZKB) equation is derived for electron acoustic shock waves in magnetized e–p–i plasma. In the present model, magnetized plasma containing two electron population with kappa distributed positrons has been considered. The propagation characteristics of three dimensional electron acoustic (EA) shock waves have been studied under the influence of magnetic field. Our present plasma model supports the negative potential shocks. Combined action of dissipation (η), superthermality (κ), concentration of positrons (β), temperature ratio of cold electrons to positrons (σ), and magnetic field (ωc) significantly modify the properties of EA shock waves. The width and amplitude of the shock structures are modified by various physical parameters. It is found that shock wave width decreases with increase in β, η0, and ωc whereas it becomes wider for κ and σ. Further, potential of the shock wave decreases as one departs away from superthermal distribution.  相似文献   

20.
The nonlinear propagation of ion-acoustic (IA) shock waves (SHWs) in a nonextensive multi-ion plasma system (consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons and positrons) has been studied. The reductive perturbation technique has been employed to derive the Burgers equation. The basic properties (polarity, amplitude, width, etc.) of the IA SHWs are found to be significantly modified by the effects of nonextensivity of electrons and positrons, ion kinematic viscosity, temperature ratio of electrons and positrons, etc. It has been observed that SHWs with positive and negative potential are formed depending on the plasma parameters. The findings of our results obtained from this theoretical investigation may be useful in understanding the characteristics of IA SHWs both in laboratory and space plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号