首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
In this study, the properties of ion‐ and positron‐acoustic solitons are investigated in a magnetized multi‐component plasma system consisting of warm fluid ions, warm fluid positrons, q‐non‐extensive distributed positrons, q‐non‐extensive distributed electrons, and immobile dust particles. To drive the Korteweg–de Vries (KdV) equation, the reductive perturbation method is used. The effects of the ratio of the density of positrons to ions, the temperature of the positrons, and ions to electrons, the non‐extensivity parameters qe and qp , and the angle of the propagation of the wave with the magnetic field on the potential of ion‐ and positron‐acoustic solitons are also studied. The present investigation is applicable to solitons in fusion plasmas in the edge of tokamak.  相似文献   

2.
The oblique propagation of the quantum electrostatic solitary waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations. The plasma consists of dynamic relativistic degenerate electrons and positrons and a weakly relativistic ion beam. The Zakharov‐Kuznetsov equation is derived using the standard reductive perturbation technique that admits an obliquely propagating soliton solution. It is found that two types of quantum acoustic modes, that is, a slow acoustic mode and fast acoustic mode, could be propagated in our plasma model. The parameter that determines the nature of soliton, that is, compressive or rarefactive soliton, for slow mode is investigated. Our numerical results show that for the slow mode, the determining parameter is ion beam velocity in the case of relativistic degenerate electrons. We also have examined the effects of plasma parameters (like the beam velocity, the density ratio of positron to electron, the relativistic factor, and the propagation angle) on the characteristics of solitary waves.  相似文献   

3.
The propagation properties of planar and non‐planar electron acoustic shock waves composed of stationary ions, cold electrons, and q‐non‐extensive hot electrons and positrons are studied in unmagnetized electron‐positron‐ion plasma. In this model, the Korteweg‐de Vries Burgers equation is obtained in the planar and non‐planar coordinates. We have investigated the combined action of the dissipation, non‐extensivity, density ratio of hot to cold electrons, concentration of positrons, and temperature difference of cold electrons, hot electrons, and positrons. It was found that the amplitude of shock wave in e‐p‐i plasma increases when the positron concentration and temperature increase. The same effect is observed in the case of kinematic viscosity η. Furthermore, it is noticed that spherical wave moves faster in comparison to the shock waves in cylindrical geometry. This difference arises due to the presence of the geometry term m/2τ. It should be noted that the contribution of the geometry factor comes through the continuity equation. Results of our work may be helpful to illustrate the different properties of shock wave features in different astrophysical and space environments like supernova, polar regions, and in the vicinity of black holes.  相似文献   

4.
The nonlinear ion-acoustic wave excitation and its stability analysis are investigated in a magnetized quantum plasma with exchange-correlation and Bohm diffraction effects of degenerate electrons in the model. Using reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for two dimensional propagation of ion-acoustic wave in a magnetized quantum plasma. It is found that the phase speed, amplitude and width of the nonlinear ion-acoustic wave structures are affected in the presence of exchange-correlation potential in the model. The stability analysis of the 2D ion-acoustic wave pulse is also presented. It is found that growth rate of the first and second order instabilities of 2D ion acoustic wave soliton is enhanced with the inclusion of exchange-correlation potential effect in the model.  相似文献   

5.
The linear and non‐linear dynamics of ion acoustic waves are investigated in three‐component magnetized plasma consisting of cold inertial ions and non‐thermal electrons and positrons. The non‐thermal components are modelled by the hybrid distribution, representing the combination of two (kappa and Cairn's) non‐thermal distributions. The relevant processes, including the slow rotation of plasma along the magnetic field axis and collision between ions and neutrals, are taken into consideration. It is shown that the non‐linear dynamics of the considered system are governed by the Zakharov–Kuznetsov equation in modified form. In the general dissipation regime, the effects of the two non‐thermal distributions on the solitary waves are compared. The effects of other plasma parameters, such as collisional and rotational frequency, are also discussed in detail.  相似文献   

6.
Zakharov–Kuznetsov–Burgers (ZKB) equation is derived for electron acoustic shock waves in magnetized e–p–i plasma. In the present model, magnetized plasma containing two electron population with kappa distributed positrons has been considered. The propagation characteristics of three dimensional electron acoustic (EA) shock waves have been studied under the influence of magnetic field. Our present plasma model supports the negative potential shocks. Combined action of dissipation (η), superthermality (κ), concentration of positrons (β), temperature ratio of cold electrons to positrons (σ), and magnetic field (ωc) significantly modify the properties of EA shock waves. The width and amplitude of the shock structures are modified by various physical parameters. It is found that shock wave width decreases with increase in β, η0, and ωc whereas it becomes wider for κ and σ. Further, potential of the shock wave decreases as one departs away from superthermal distribution.  相似文献   

7.
A theoretical investigation has been carried out on the propagation of non-linear ion-acoustic shock waves (IASHWs) in a magnetized degenerate quantum plasma system composed of inertial non-relativistic positively charged light and heavy ions, inertialess non-relativistically or ultra-relativistically degenerate electrons and positrons. The reductive perturbation method has been employed to derive the Burgers' equation. It has been observed that under consideration, our plasma model supports only positive potential shock structure. It is also found that the amplitude and steepness of the IASHWs have been significantly modified by the variation of ion kinematic viscosity, oblique angle, number density, and charge state of the plasma species. The results of our present investigation will be helpful for understanding the propagation of IASHWs in white dwarfs and neutron stars.  相似文献   

8.
A.P. Misra 《Physics letters. A》2008,372(42):6412-6415
The propagation of one-dimensional shock-like waves (SLWs) in a dissipative quantum magnetoplasma medium is studied. A quantum magnetohydrodynamic (QMHD) model is used to take into account the effects of quantum force associated with the Bohm potential and the pressure-like spin force for electrons. It is shown that the nonlinear evolution equation [Korteweg-de-Vries-Burger (KdVB)], which describes the dynamics of small but finite amplitude magnetosonic waves (MSWs) (where the dissipation is provided by the plasma resistivity) exhibits both oscillatory and monotonic shock-like perturbations (SLPs) by the effects of collective tunneling and spin alignment. Both the quantum and spin force significantly modify the shock-like structures and the strength of SLPs. The theoretical results could be of important for strongly magnetized astrophysical (e.g., pulsars, magnetars) plasmas.  相似文献   

9.
A three‐dimensional four components magneto‐plasma system consists of super‐thermal κ‐distributed electrons and positrons, Maxwellian ions, and inertial massive negatively charged dust grains is considered to examine the modulational instability (MI) of the dust‐acoustic waves (DAWs), which propagates in such a magneto‐plasma system. The reductive perturbation method, which is valid for small but finite amplitude DAWs, is employed to derive the (3 + 1)‐dimensional non‐linear Schrödinger equation (NLSE). The NLSE leads to the MI of DAWs as well as the formation of dust‐acoustic rogue waves (DARWs) which are formed due to the effects of non‐linearity in the propagation of the DAWs. It is found that the basic features (viz. amplitude and width) of the DAWs and DARWs (which is formed in the unstable region) are significantly modified by the various plasma parameters such as κ‐distributed electrons and positrons, temperatures, and number densities of plasma species, and so on. The application of the results in both space and laboratory magneto‐plasma systems is briefly discussed.  相似文献   

10.
The nonlinear propagation of ion-acoustic (IA) shock waves (SHWs) in a nonextensive multi-ion plasma system (consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons and positrons) has been studied. The reductive perturbation technique has been employed to derive the Burgers equation. The basic properties (polarity, amplitude, width, etc.) of the IA SHWs are found to be significantly modified by the effects of nonextensivity of electrons and positrons, ion kinematic viscosity, temperature ratio of electrons and positrons, etc. It has been observed that SHWs with positive and negative potential are formed depending on the plasma parameters. The findings of our results obtained from this theoretical investigation may be useful in understanding the characteristics of IA SHWs both in laboratory and space plasmas.  相似文献   

11.
P.K. Shukla   《Physics letters. A》2009,373(39):3547-3549
It is shown that ions can be accelerated by the space charge electric force arising from the separation of electrons and positrons due to the ponderomotive force of the magnetic field-aligned circularly polarized electromagnetic (CPEM) wave in a magnetized electron–positron–ion plasma. The ion acceleration critically depends on the external magnetic field strength. The result is useful in understanding differential ion acceleration in magnetized electron–positron–ion plasmas, such as those in magnetars and in some laboratory experiments that aim to mimic astrophysical environments.  相似文献   

12.
The nonlinear propagation of ion-acoustic(IA) shock waves(SHWs) in a nonextensive multi-ion plasma system(consisting of inertial positive light ions as well as negative heavy ions, noninertial nonextensive electrons and positrons) has been studied. The reductive perturbation technique has been employed to derive the Burgers equation.The basic properties(polarity, amplitude, width, etc.) of the IA SHWs are found to be significantly modified by the effects of nonextensivity of electrons and positrons, ion kinematic viscosity, temperature ratio of electrons and positrons, etc.It has been observed that SHWs with positive and negative potential are formed depending on the plasma parameters.The findings of our results obtained from this theoretical investigation may be useful in understanding the characteristics of IA SHWs both in laboratory and space plasmas.  相似文献   

13.
Linear and nonlinear compressional magnetosonic waves are studied in magnetized degenerate spin-1/2 Fermi plasmas. Starting from the basic equations of a quantum magnetoplasma we develop the system of quantum magnetohydrodynamic (QMHD) equations. Spin effects are incorporated via spin force and macroscopic spin magnetization current. Sagdeev potential approach is employed to derive the nonlinear energy integral equation which admits the rarefactive solitary structure in the subAlfvenic region. The quantum diffraction due to Bohm potential does not affect the amplitude of soliton but has a direct effect on its width. The width of soliton is broadened with the increase in the quantization of the system due to quantum diffraction. However, the nonlinear wave amplitude is reduced with the increase in the value of magnetization energy due to electron spin-1/2 effects. The degeneracy effect due to quantum plasma beta enhances the amplitude of magnetosonic soliton. The importance of the work relevant to compact astrophysical bodies is pointed out.  相似文献   

14.
The properties of obliquely propagating ion-acoustic waves have been investigated in multi-ions magnetized plasma comprising of inertial, positively and negatively charged ion fluids, trapped electrons, and negatively charged stationary heavy ions. The propagation of the waves is oblique to the ambient magnetic field which is along the z-direction. Only fast type of modes exists in the linear regime. The reductive perturbation method was adopted to derive the Korteweg– de Vries (KdV) and Burger equations, as well as the solitary and shock wave solutions of the evolved equations, have been used to analyze the properties of the small but finite amplitude waves. The effects of the constituent plasma parameters, namely, the trapping effect of electrons, the electron degenerate temperature and the viscosity coefficient on the dynamics of the small amplitude solitary and shock waves have been examined. The influence of the magnetic field and the obliquity parameter on the propagation characteristics of ion-acoustic waves are discussed.  相似文献   

15.
Following the idea of three‐wave resonant interactions of lower hybrid waves, it is shown that quantum‐modified lower hybrid (QLH) wave in electron–positron–ion plasma with spatial dispersion can decay into another QLH wave (where electron and positrons are activated, whereas ions remain in the background) and another ultra‐low frequency quantum‐modified ultra‐low frequency Lower Hybrid (QULH) (where ions are mobile). Quantum effects like Bohm potential and Fermi pressure on the lower hybrid wave significantly reshaped the dispersion properties of these waves. Later, a set of non‐linear Zakharov equations were derived to consider the formation of QLH wave solitons, with the non‐linear contribution from the QLH waves. Furthermore, modulational instability of the lower hybrid wave solitons is investigated, and consequently, its growth rates are examined for different limiting cases. As the growth rate associated with the three‐wave resonant interaction is generally smaller than the growth associated with the modulational instability, only the latter have been investigated. Soliton solutions from the set of coupled Zakharov and NLS equations in the quasi‐stationary regime have been studied. Ordinary solitons are an attribute of non‐linearity, whereas a cusp soliton solution featured by nonlocal nonlinearity has also been studied. Such an approach to lower hybrid waves and cusp solitons study in Fermi gas comprising electron positron and ions is new and important. The general results obtained in this quantum plasma theory will have widespread applicability, particularly for processes in high‐energy plasma–laser interactions set for laboratory astrophysics and solid‐state plasmas.  相似文献   

16.
Ion-acoustic shock waves and their head-on collision in a dense quantum plasma comprised of electrons, positrons, and ions are studied. The extended Poincaré-Lighthill-Kuo perturbation method is used to derive the Korteweg-de Vries-Burgers equations for shock waves in this plasma. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. The effects of the ratio of positrons to ions unperturbation number density μ, the normalized kinematic viscosity ηi0, and the quantum Bohm potential H on the interaction and structure of the shock waves are investigated. It is found that there are integrally vertical downward movements for both the colliding shocks after their head-on collision, but there are no shifts of the postcollision trajectories (phase shifts). It is also found that these plasma parameters can significantly influence the collision and properties of the colliding shocks. The results may have relevance in dense astrophysical plasmas (such as neutron stars or white dwarfs) as well as in intense laser-solid density plasma experiments.  相似文献   

17.
The nonlinear propagation of modified electron‐acoustic (mEA) shock waves in an unmagnetized, collisionless, relativistic, degenerate quantum plasma (containing non‐relativistic degenerate inertial cold electrons, both nonrelativistic and ultra‐relativistic degenerate hot electron and inertial positron fluids, and positively charged static ions) has been investigated theoretically. The well‐known Burgers type equation has been derived for both planar and nonplanar geometry by employing the reductive perturbation method. The shock wave solution has also been obtained and numerically analyzed. It has been observed that the mEA shock waves are significantly modified due to the effects of degenerate pressure and other plasma parameters arised in this investigation. The properties of planar Burgers shocks are quite different from those of nonplanar Burgers shocks. The basic features and the underlying physics of shock waves, which are relevant to some astrophysical compact objects (viz. non‐rotating white dwarfs, neutron stars, etc.), are briefly discussed. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Magnetosonic shock structures in dissipative magnetized degenerate electron ion plasma are studied.The two fluid quantum magnetohydrodynamic equations for non-degenerate ions and ultra-relativistic degenerate electron fluids with the Maxwell equations are presented.Using the reductive perturbation technique the Korteweg de Vries Burgers(KdVB)equation is derived and its solution is presented with the tanh method.Astrophysical plasma parameters are used to study the effects of variation of plasma density,magnetic held intensity and kinematic viscosity on the propagation characteristics of nonlinear shock structures in such plasma systems.  相似文献   

19.
Ion-acoustic envelope solitary waves in a very dense plasma comprised of the electrons, positrons and ions are investigated. For this purpose, the quantum hydrodynamic model and the Poisson equation are used. A modified nonlinear Schrödinger equation is derived by employing the reductive perturbation method. The effects of the quantum correction and of the positron density on the propagation and stability of the envelope solitary waves are examined. The nonplanar (cylindrical/spherical) geometry gives rise to an instability period. The latter cannot exist for planar case and it affected by the quantum parameters, as well as the positron density. The present investigation is relevant to white dwarfs.  相似文献   

20.
A theoretical investigation has been made of nonlinear propagation of ultra-low-frequency electromagnetic waves in a magnetized two fluid (negatively charged dust and positively charged ion fluids) dusty plasma. These are modified Alfvén waves for small value of and are modified magnetosonic waves for large , where is the angle between the directions of the external magnetic field and the wave propagation. A nonlinear evolution equation for the wave magnetic field, which is known as Korteweg de Vries (K-dV) equation and which admits a stationary solitary wave solution, is derived by the reductive perturbation method. The effects of external magnetic field and dust characteristics on the amplitude and the width of these solitary structures are examined. The implications of these results to some space and astrophysical plasma systems, especially to planetary ring-systems, are briefly mentioned. Received 8 July 1999 and Received in final form 11 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号