首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Rechargeable aqueous zinc batteries (RAZB) have been re‐evaluated because of the superiority in addressing safety and cost concerns. Nonetheless, the limited lifespan arising from dendritic electrodeposition of metallic Zn hinders their further development. Herein, a metal–organic framework (MOF) was constructed as front surface layer to maintain a super‐saturated electrolyte layer on the Zn anode. Raman spectroscopy indicated that the highly coordinated ion complexes migrating through the MOF channels were different from the solvation structure in bulk electrolyte. Benefiting from the unique super‐saturated front surface, symmetric Zn cells survived up to 3000 hours at 0.5 mA cm?2, near 55‐times that of bare Zn anodes. Moreover, aqueous MnO2–Zn batteries delivered a reversible capacity of 180.3 mAh g?1 and maintained a high capacity retention of 88.9 % after 600 cycles with MnO2 mass loading up to 4.2 mg cm?2.  相似文献   

2.
Aqueous Zn batteries are promising energy-storage devices. However, their lifespan is limited by irreversible Zn anodes owing to water decomposition and Zn dendrite growth. Here, we separate aqueous electrolyte from Zn anode by coating a thin MOF layer on anode and filling the pores of MOF with hydrophobic Zn(TFSI)2-tris(2,2,2-trifluoroethyl)phosphate (TFEP) organic electrolyte that is immiscible with aqueous Zn(TFSI)2–H2O bulk electrolyte. The MOF encapsulated Zn(TFSI)2-TFEP forms a ZnF2-Zn3(PO4)2 solid electrolyte interphase (SEI) preventing Zn dendrite and water decomposition. The Zn(TFSI)2-TFEP@MOF electrolyte protected Zn anode enables a Zn||Ti cell to achieve a high average Coulombic efficiency of 99.1 % for 350 cycles. The highly reversible Zn anode brings a high energy density of 210 Wh kg−1 (of cathode and anode mass) and a low capacity decay rate of 0.0047 % per cycle over 600 cycles in a Zn||MnO2 full cell with a low capacity ratio of Zn:MnO2 at 2:1.  相似文献   

3.
The artificial solid electrolyte interphase (SEI) plays a pivotal role in Zn anode stabilization but its long-term effectiveness at high rates is still challenged. Herein, to achieve superior long-life and high-rate Zn anode, an exquisite electrolyte additive, lithium bis(oxalate)borate (LiBOB), is proposed to in situ derive a highly Zn2+-conductive SEI and to dynamically patrol its cycling-initiated defects. Profiting from the as-constructed real-time, automatic SEI repairing mechanism, the Zn anode can be cycled with distinct reversibility over 1800 h at an ultrahigh current density of 50 mA cm−2, presenting a record-high cumulative capacity up to 45 Ah cm−2. The superiority of the formulated electrolyte is further demonstrated in the Zn||MnO2 and Zn||NaV3O8 full batteries, even when tested under harsh conditions (limited Zn supply (N/P≈3), 2500 cycles). This work brings inspiration for developing fast-charging Zn batteries toward grid-scale storage of renewable energy sources.  相似文献   

4.
In aqueous electrolytes, the uncontrollable interfacial evolution caused by a series of factors such as pH variation and unregulated Zn2+ diffusion would usually result in the rapid failure of metallic Zn anode. Considering the high correlation among various triggers that induce the anode deterioration, a synergistic modulation strategy based on electrolyte modification is developed. Benefitting from the unique pH buffer mechanism of the electrolyte additive and its capability to in situ construct a zincophilic solid interface, this synergistic effect can comprehensively manage the thermodynamic and kinetic properties of Zn anode by inhibiting the pH variation and parasitic side reactions, accelerating de-solvation of hydrated Zn2+, and regulating the diffusion behavior of Zn2+ to realize uniform Zn deposition. Thus, the modified Zn anode can achieve an impressive lifespan at ultra-high current density and areal capacity, operating stably for 609 and 209 hours at 20 mA cm−2, 20 mAh cm−2 and 40 mA cm−2, 20 mAh cm−2, respectively. Based on this exceptional performance, high loading Zn||NH4V4O10 batteries can achieve excellent cycle stability and rate performance. Compared with those previously reported single pH buffer strategies, the synergistic modulation concept is expected to provide a new approach for highly stable Zn anode in aqueous zinc-ion batteries.  相似文献   

5.
The high thermodynamic instability and side reactions of Zn-metal anode (ZMA), especially at high current densities, greatly impede the commercialization of aqueous zinc-ion batteries (AZIBs). Herein, a fluorine-rich double protective layer strategy is proposed to obtain the high reversibility of AZIBs through the introduction of a versatile tetradecafluorononane-1,9-diol (TDFND) additive in aqueous electrolyte. TDFND molecule with large adsorption energy (−1.51 eV) preferentially absorbs on the Zn anode surface to form a Zn(OR)2 (R=−CH2−(CF2)7−CH2−) cross-linking complex network, which balances space electric field and controls the Zn2+ ion flux, thus enabling the uniform and compact deposition of Zn (002) crystal planes. Meanwhile, TDFND with low Lowest unoccupied molecular orbital (LUMO, 0.10 eV) energy level is priorly decomposed to regulate the interfacial chemistry of ZMA by building a ZnF2-rich solid electrode/electrolyte interface (SEI) layer. It is found that a 14 nm-thick SEI layer delivers excellent structural integrity to suppress parasitic reactions by blocking the direct contact of active water and ZMA. Consequently, the Zn electrode exhibits a superior cycling life over 430 h at 10 mA cm−2 and a high average Coulombic efficiency of 99.8 % at 5 mA cm−2. Furthermore, a 68 mAh pouch cell delivers 80.3 % capacity retention for 1000 cycles.  相似文献   

6.
Advanced aqueous batteries are promising for next generation flexible devices owing to the high safety, yet still requiring better cycling stability and high capacities in wide temperature range. Herein, a polymeric acid hydrogel electrolyte (PAGE) with 3 M Zn(ClO4)2 was fabricated for high performance Zn/polyaniline (PANI) batteries. With PAGE, even at −35 °C the Zn/Zn symmetrical battery can keep stable for more than 1 500 h under 2 mA cm−2, and the Zn/PANI battery can provide ultra-high stable specific capacity of 79.6 mAh g−1 for more than 70 000 cycles at 15 A g−1. This can be mainly ascribed to the −SO3H+ function group in PAGE. It can generate constant protons and guide the (002) plane formation to accelerate the PANI redox reaction kinetics, increase the specific capacity, and suppress the side reaction and dendrites. This proton-supplying strategy by polymeric acid hydrogel may further propel the development of high performance aqueous batteries.  相似文献   

7.
Zinc (Zn) metal anode suffers from uncontrollable Zn dendrites and parasitic side reactions at the interface, which restrict the practical application of aqueous rechargeable zinc batteries (ARZBs). Herein, an amphoteric cellulose-based double-network is introduced as hydrogel electrolyte to overcome these obstacles. On one hand, the amphoteric groups build anion/cation transport channels to regulate electro-deposition behavior on Zn (002) crystal plane enabled by homogenizing Zn2+ ions flux. On the other hand, the strong bonding between negatively charged carboxyl groups and Zn2+ ions promote the desolvation process of [Zn(H2O)6]2+ to eliminate side reactions. Based on the above two functions, the hydrogel electrolyte enables an ultra-stable cycling with a cumulative capacity of 7 Ah cm−2 at 20 mA cm−2/20 mAh cm−2 for Zn||Zn cell. This work provides significant concepts for developing hydrogel electrolytes to realize stable anode for high-performance ARZBs.  相似文献   

8.
Rechargeable Zinc batteries (RZBs) are considered a potent competitor for next-generation electrochemical devices, due to their multiple advantages. Nevertheless, traditional aqueous electrolytes may cause serious hazards to long-term battery cycling through fast capacity fading and poor Coulombic efficiency (CE), which happens due to complex reaction kinetics in aqueous systems. Herein, we proposed the novel adoption of the protic amide solvent, N-methyl formamide (NMF) as a Zinc battery electrolyte, which possesses a high dielectric constant and high flash point to promote fast kinetics and battery safety simultaneously. Dendrite-free and granular Zn deposition in Zn-NMF electrolyte assures ultra-long lifespan of 2000 h at 2.0 mA cm−2/2.0 mAh cm−2, high CE of 99.57 %, wide electrochemical window (≈3.43 V vs. Zn2+/Zn), and outstanding durability up to 10.0 mAh cm−2. This work sheds light on the efficient performance of the protic non-aqueous electrolyte, which will open new opportunities to promote safe and energy-dense RZBs.  相似文献   

9.
Aqueous rechargeable batteries have attracted attention owning to their advantages of safety, low cost, and sustainability, while the limited electrochemical stability window (1.23 V) of water leads to their failure in competition with organic-based lithium-ion batteries. Herein, we report an alkali–acid Zn–PbO2 hybrid aqueous battery obtained by coupling an alkaline Zn anode with an acidic PbO2 cathode. It shows the capability to deliver an impressively high open-circuit voltage (Voc) of 3.09 V and an operate voltage of 2.95 V at 5 mA cm−2, thanks to the contribution of expanding the voltage window and the electrochemical neutralization energy from the alkali–acid asymmetric-electrolyte hybrid cell. The hybrid battery can potentially deliver a large area capacity over 2 mAh cm−2 or a high energy density of 252.39 Wh kg−1 and shows almost no fading in area capacity over 250 charge–discharge cycles.  相似文献   

10.
Zn−I2 batteries stand out in the family of aqueous Zn-metal batteries (AZMBs) due to their low-cost and immanent safety. However, Zn dendrite growth, polyiodide shuttle effect and sluggish I2 redox kinetics result in dramatically capacity decay of Zn−I2 batteries. Herein, a Janus separator composed of functional layers on anode/cathode sides is designed to resolve these issues simultaneously. The cathode layer of Fe nanoparticles-decorated single-wall carbon nanotubes can effectively anchor polyiodide and catalyze the redox kinetics of iodine species, while the anode layer of cation exchange resin rich in −SO3 groups is beneficial to attract Zn2+ ions and repel detrimental SO42−/polyiodide, improving the stability of cathode/anode interfaces synergistically. Consequently, the Janus separator endows outstanding cycling stability of symmetrical cells and high-areal-capacity Zn−I2 batteries with a lifespan over 2500 h and a high-areal capacity of 3.6 mAh cm−2.  相似文献   

11.
Aqueous Zn batteries are attracting extensive attentions, but their application is still hindered by H2O-induced Zn-corrosion and hydrogen evolution reactions. Addition of organic solvents into aqueous electrolytes to limit the H2O activity is a promising solution, but at the cost of greatly reduced Zn anode kinetics. Here we propose a simple strategy for this challenge by adding 50 mM iodine ions into an organic-water (1,2-dimethoxyethane (DME)+water) hybrid electrolyte, which enables the electrolyte simultaneously owns the advantages of low H2O activity and accelerated Zn kinetics. We demonstrate that the DME breaks the H2O hydrogen-bond network and exclude H2O from Zn2+ solvation shell. And the I is firmly adsorbed on the Zn anode, reducing the Zn2+ de-solvation barrier from 74.33 kJ mol−1 to 32.26 kJ mol−1 and inducing homogeneous nucleation behavior. With such electrolyte, the Zn//Zn symmetric cell exhibits a record high cycling lifetime (14.5 months) and achieves high Zn anode utilization (75.5 %). In particular, the Zn//VS2@SS full cell with the optimized electrolyte stably cycles for 170 cycles at a low N : P ratio (3.64). Even with the cathode mass-loading of 16.7 mg cm−2, the full cell maintains the areal capacity of 0.96 mAh cm−2 after 1600 cycles.  相似文献   

12.
Zinc-ion batteries are regarded as an extremely promising candidate for large-scale energy storage equipment due to the inexpensive ingredients and high safety. However, dendrite growth and side reactions occur in the Zn anode, which lead to exceedingly low coulombic efficiency (CE) and poor cycling stability. In this work, we propose a strategy of a conductive/insulating bi-functional coating layer (CIBL) for stable Zn metal anodes. Porous Ag nanowires (NWs) coating as a conductive layer effectively reduces the nuclear barrier and contains Zn2+ deposition in a certain space. Polyimide (PI) coatings as insulating layer implement a shunting effect on Zn2+, which could reduce the differential concentration on the Zn surface and induce uniform deposition of Zn2+. Therefore, the CIBL−Zn//CIBL−Zn battery achieves stable plating/stripping of over 1300 h at 1 mA cm−2. The CE of CIBL−Zn//CIBL−Zn battery maintains at 99.2 % even after 1000 cycles. Moreover, the CIBL−Zn//V2O5 battery exhibits a capacity of nearly 289.2 mA h g−1 at 5 A g−1 after 3000 cycles and no sign of capacity degradation is found, which further demonstrate the feasibility of this strategy in practical application.  相似文献   

13.
Metallic Zinc (Zn) is considered as a remarkably promising anode for aqueous Zn-ion batteries due to its high volumetric capacity and low redox potential. Unfortunately, dendritic growth and severe side reactions destabilizes the electrode/electrolyte interface, and ultimately reduce the electrochemical performance. Here, an artificial protective layer (APL) with a regulated ion and electron-conducting interphase is constructed on the Zn-metal anode to provide excellent interfacial stability in high-rate cycling. The superior ionic and moderate electronic conductivity of the APL derives from the co-embedding of MXene and Zn(CF3SO3)2 salts into the polyvinyl alcohol hydrogel, which enables a synergistic effect of local current density reduction during plating and ion transport acceleration during stripping for Zn anode. Furthermore, the high Young's modulus of the protective layer and dendrite-free deposition morphology during cycling suppresses hydrogen evolution reactions (2.5 mmol h−1 cm−2) and passivation. As a result, in symmetrical cell tests, the modified battery presents a stable life of over 2000 cycles at ultra-high current density of 20 mA cm−2. This research presents a new insight into the formation and regulation of stable electrode-electrolyte interface for the Zn-metal anode.  相似文献   

14.
Aqueous rechargeable zinc-ion batteries (ARZBs) are impeded by the mutual problems of unstable cathode, electrolyte parasitic reactions, and dendritic growth of zinc (Zn) anode. Herein, a triple-functional strategy by introducing the tetramethylene sulfone (TMS) to form a hydrated eutectic electrolyte is reported to ameliorate these issues. The activity of H2O is inhibited by reconstructing hydrogen bonds due to the strong interaction between TMS and H2O. Meanwhile, the preferentially adsorbed TMS on the Zn surface increases the thickness of double electric layer (EDL) structure, which provides a shielding buffer layer to suppress dendrite growth. Interestingly, TMS modulates the primary solvation shell of Zn2+ ultimately to achieve a novel solvent co-intercalation ((Zn-TMS)2+) mechanism, and the intercalated TMS works as a “pillar” that provides more zincophilic sites and stabilizes the structure of cathode (NH4V4O10, (NVO)). Consequently, the Zn||NVO battery exhibits a remarkably high specific capacity of 515.6 mAh g−1 at a low current density of 0.2 A g−1 for over 40 days. This multi-functional electrolytes and solvent co-intercalation mechanism will significantly propel the practical development of aqueous batteries.  相似文献   

15.
Aqueous zinc-ion batteries (AZBs) show promises for large-scale energy storage. However, the zinc utilization rate (ZUR) is generally low due to side reactions in the aqueous electrolyte caused by the active water molecules. Here, we design a novel solvation structure in the electrolyte by introduction of sulfolane (SL). Theoretical calculations, molecular dynamics simulations and experimental tests show that SL remodels the primary solvation shell of Zn2+, which significantly reduces the side reactions of Zn anode and achieves high ZUR under large capacities. Specifically, the symmetric and asymmetric cells could achieve a maximum of ∼96 % ZUR at an areal capacity of 24 mAh cm−2. In a ZUR of ∼67 %, the developed Zn−V2O5 full cell can be stably cycled for 500 cycles with an energy density of 180 Wh kg−1 and Zn-AC capacitor is stable for 5000 cycles. This electrolyte structural engineering strategy provides new insight into achieving high ZUR of Zn anodes for high performance AZBs.  相似文献   

16.
Developing flexible Li-CO2 batteries is a promising approach to reuse CO2 and simultaneously supply energy to wearable electronics. However, all reported Li-CO2 batteries use liquid electrolyte and lack robust electrolyte/electrodes structure, not providing the safety and flexibility required. Herein we demonstrate flexible liquid-free Li-CO2 batteries based on poly(methacrylate)/poly(ethylene glycol)-LiClO4-3 wt %SiO2 composite polymer electrolyte (CPE) and multiwall carbon nanotubes (CNTs) cathodes. The CPE (7.14×10−2 mS cm−1) incorporates with porous CNTs cathodes, displaying stable structure and small interface resistance. The batteries run for 100 cycles with controlled capacity of 1000 mAh g−1. Moreover, pouch-type flexible batteries exhibit large reversible capacity of 993.3 mAh, high energy density of 521 Wh kg−1, and long operation time of 220 h at different degrees of bending (0–360°) at 55 °C.  相似文献   

17.
Aqueous Zn-Iodine (I2) batteries are attractive for large-scale energy storage. However, drawbacks include, Zn dendrites, hydrogen evolution reaction (HER), corrosion and, cathode “shuttle” of polyiodines. Here we report a class of N-containing heterocyclic compounds as organic pH buffers to obviate these. We evidence that addition of pyridine /imidazole regulates electrolyte pH, and inhibits HER and anode corrosion. In addition, pyridine and imidazole preferentially absorb on Zn metal, regulating non-dendritic Zn plating /stripping, and achieving a high Coulombic efficiency of 99.6 % and long-term cycling stability of 3200 h at 2 mA cm−2, 2 mAh cm−2. It is also confirmed that pyridine inhibits polyiodines shuttling and boosts conversion kinetics for I/I2. As a result, the Zn-I2 full battery exhibits long cycle stability of >25 000 cycles and high specific capacity of 105.5 mAh g−1 at 10 A g−1. We conclude organic pH buffer engineering is practical for dendrite-free and shuttle-free Zn-I2 batteries.  相似文献   

18.
Without excess Li, anode-free Li-metal batteries (AFLMBs) have been proposed as the most likely solution to realizing highly-safe and cost-effective Li-metal batteries. Nevertheless, short cyclic life puzzles conventional AFLMBs due to anodic dead Li accumulation with a local current concentration induced by irreversible electrolyte depletion, insufficient active Li reservoir and slow Li+ transfer at the solid electrolyte interphase (SEI). Herein, SrI2 is introduced into carbon paper (CP) current collector to effectively suppress dead Li through synergistic mechanisms including reversible I/I3 redox reaction to reactivate dead Li, dielectric SEI surface with SrF2 and LiF to prevent electrolyte decomposition and highly ionic conductive (3.488 mS cm−1) inner layer of SEI with abundant LiI to enable efficient Li+ transfer inside. With the SrI2-modified current collector, the NCM532/CP cell delivers unprecedented cyclic performances with a capacity of 129.2 mAh g−1 after 200 cycles.  相似文献   

19.
《中国化学快报》2023,34(4):107525
Rechargeable aqueous Zn/MnO2 batteries raise massive research activities in recent years. However, both the working principle and the degradation mechanism of this battery chemistry are still under debate. Herein, we provide an in-depth electrochemical and structural investigation on this controversial issue based on α-MnO2 crystalline nanowires. Mechanistic analysis substantiates a two-electron reaction pathway of Mn2+/Mn4+ redox couple from part of MnO2 accompanying with a reversible precipitation/dissolution of flaky zinc sulfate hydroxide (ZSH) during the discharge/charge processes. The formation of the ZSH layer is double-edged, which passivates the deep dissolution of MnO2 upon discharging, but promotes the electrochemical deposition kinetics of active MnO2 upon charging. The cell degradation originates primarily from the corrosion failure of metallic zinc anode and the accumulation of irreversible ZnMn2O4 phases on the cathode. The addition of MnSO4 to the electrolyte could afford supplementary capacity contribution via electro-oxidation of Mn2+. However, a high MnSO4 concentration will expedite the cell failure by corroding the metallic zinc anodes. The present study will shed a fundamental insight on developing new strategies toward practically viable Zn/MnO2 batteries.  相似文献   

20.
Stable Zn anodes with a high utilization efficiency pose a challenge due to notorious dendrite growth and severe side reactions. Therefore, electrolyte additives are developed to address these issues. However, the additives are always consumed by the electrochemical reactions over cycling, affecting the cycling stability. Here, hexamethylphosphoric triamide (HMPA) is reported as an electrolyte additive for achieving stable cycling of Zn anodes. HMPA reshapes the solvation structures and promotes anion decomposition, leading to the in situ formation of inorganic-rich solid-electrolyte-interphase. More interestingly, this anion decomposition does not involve HMPA, preserving its long-term impact on the electrolyte. Thus, the symmetric cells with HMPA in the electrolyte survive ≈500 h at 10 mA cm−2 for 10 mAh cm−2 or ≈200 h at 40 mA cm−2 for 10 mAh cm−2 with a Zn utilization rate of 85.6 %. The full cells of Zn||V2O5 exhibit a record-high cumulative capacity even under a lean electrolyte condition (E/C ratio=12 μL mAh−1), a limited Zn supply (N/P ratio=1.8) and a high areal capacity (6.6 mAh cm−2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号