首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Solid‐state Li metal batteries (SSLMBs) have attracted considerable interests due to their promising energy density as well as high safety. However, the realization of a well‐matched Li metal/solid‐state electrolyte (SSE) interface remains challenging. Herein, we report g‐C3N4 as a new interface enabler. We discover that introducing g‐C3N4 into Li metal can not only convert the Li metal/garnet‐type SSE interface from point contact to intimate contact but also greatly enhance the capability to suppress the dendritic Li formation because of the greatly enhanced viscosity, decreased surface tension of molten Li, and the in situ formation of Li3N at the interface. Thus, the resulting Li‐C3N4|SSE|Li‐C3N4 symmetric cell gives a significantly low interfacial resistance of 11 Ω cm2 and a high critical current density (CCD) of 1500 μA cm?2. In contrast, the same symmetric cell configuration with pristine Li metal electrodes has a much larger interfacial resistance (428 Ω cm2) and a much lower CCD (50 μA cm?2).  相似文献   

2.
《中国化学快报》2023,34(11):108228
Li2ZrCl6 (LZC) solid-state electrolytes (SSEs) have been recognized as a candidate halide SSEs for all-solid-state Li batteries (ASSLBs) with high energy density and safety due to its great compatibility with 4 V-class cathodes and low bill-of-material (BOM) cost. However, despite the benefits, the poor chemical/electrochemical stability of LZC against Li metal causes the deterioration of Li/LZC interface, which has a detrimental inhibition on Li+ transport in ASSLBs. Herein, we report a composite SSE combining by LZC and argyrodite buffer layer (Li6PS5Cl, LPSC) that prevent the unfavorable interaction between LZC and Li metal. The Li/LPSC-LZC-LPSC/Li symmetric cell stably cycles for over 1000 h at 0.3 mA/cm2 (0.15 mAh/cm2) and has a high critical current density (CCD) value of 2.1 mA/cm2 at 25 °C. Under high temperature (60 °C) which promotes the reaction between Li and LZC, symmetric cell fabricated with composite SSE also display stable cycling performance over 1200 h at 0.3 mAh/cm2. Especially, the Li/NCM ASSLBs fabricated with composite SSE exhibit a high initial coulombic efficiency, as well as superior cycling and rate performance. This simple and efficient strategy will be instrumental in the development of halide-based high-performance ASSLBs.  相似文献   

3.
Applying interlayers is the main strategy to address the large area specific resistance (ASR) of Li/garnet interface. However, studies on eliminating the Li2CO3 and LiOH interfacial lithiophobic contaminants are still insufficient. Here, thermal-decomposition vapor deposition (TVD) of a carbon modification layer on Li6.75La3Zr1.75Ta0.25O12 (LLZTO) provides a contaminant-free surface. Owing to the protection of the carbon layer, the air stability of LLZTO is also improved. Moreover, owing to the amorphous structure of the low graphitized carbon (LGC), instant lithiation is achieved, and the ASR of the Li/LLZTO interface is reduced to 9 Ω cm2. Lithium volatilization and Zr4+ reduction are also controllable during TVD. Compared with its high graphitized carbon counterpart (HGC), the LGC-modified Li/LLZTO interface displays a higher critical current density of 1.2 mA cm−2, as well as moderate Li plating and stripping, which provides enhanced polarization voltage stability.  相似文献   

4.
Herein, cobalt (Co)-based metal–organic zeolitic imidazole frameworks (ZIF-67) coupled with g-C3N4 nanosheets synthesized via a simple microwave irradiation method. SEM, TEM and HR-TEM results showed that ZIF-67 were uniformly dispersed on g-C3N4 surfaces and had a rhombic dodecahedron shape. The photocatalytic properties of g-C3N4/ZIF-67 nanocomposite were evaluated by photocatalytic dye degradation of crystal violet (CV), 4-chlorophenol (4-CP) and photocatalytic hydrogen (H2) production. In presence of visible light illumination, the photocatalytic dye results showed that 95% CV degradation and 53% 4-CP degradation within 80 min. The H2 production of the g-C3N4/ZIF-67 composite was 2084 μmol g−1, which is 3.84 folds greater than that of bare g-C3N4 (541 μmol g−1).  相似文献   

5.
The garnet electrolyte presents poor wettability with Li metal, resulting in an extremely large interfacial impedance and drastic growth of Li dendrites. Herein, a novel ultra-stable conductive composite interface (CCI) consisting of LiySn alloy and Li3N is constructed in situ between Li6.4La3Zr1.4Ta0.6O12 (LLZTO) pellet and Li metal by a conversion reaction of SnNx with Li metal at 300 °C. The LiySn alloy as a continuous and robust bridge between LLZTO and Li metal can effectively reduce the LLZTO/Li interfacial resistance from 4468.0 Ω to 164.8 Ω. Meanwhile, the Li3N as a fast Li-ion channel can efficiently transfer Li ions and give their uniform distribution at the LLZTO/Li interface. Therefore, the Li/LLZTO@CCI/Li symmetric battery stably cycles for 1200 h without short circuit, and the all-solid-state high-voltage Li/LLZTO@CCI/LiNi0.5Co0.2Mn0.3O2 battery achieves a specific capacity of 161.4 mAh g−1 at 0.25 C with a capacity retention rate of 92.6 % and coulombic efficiency of 100.0 % after 200 cycles at 25 °C.  相似文献   

6.
In this study, copper/zinc oxide/graphite nitrogen carbide (Cu/ZnO/g-C3N4) is prepared using a hydrothermal method and applied as a photocatalyst for CO2 photoreduction. The morphology and structural properties of the obtained Cu/ZnO/g-C3N4 are systematically characterized through X-ray powder diffraction, ultraviolet–visible absorption spectroscopy, transmission electronic microscopy, and photoluminescence spectroscopy. A 3 wt% Cu/ZnO/g-C3N4 photocatalyst exhibits high CH4 (40.7 μmol g−1 hr−1), CO (65.1 μmol g−1 hr−1), and CH3OH (92.5 μmol g−1 hr−1) production rates, which are 38.3, 77.1, and 58.1 fold higher than the pure g-C3N4. The production rate is higher than those for bulk g-C3N4 and ZnO/g-C3N4. Finally, the reaction mechanism of Cu/ZnO/C3N4 is proposed in this study.  相似文献   

7.
Development of nanocomposite based electrochemical sensors for detection of toxic chemicals describes an environmentally benign strategy for monitoring the health of ecosystem. Herein, we reported in situ preparation of graphitic carbon nitride (g-C3N4) decorated Ag2S/NiFe2O4 nanocomposite sensor by facile precipitation method. The electrochemical studies demonstrated efficient electrocatalytic activity of ternary nanocomposite pasted glassy carbon electrode (g-C3N4@Ag2S/NiFe2O4/GCE) for selective detection of formaldehyde. Moreover, fabricated sensor exhibit rapid amperometric response with excellent selectivity, remarkable sensitivity (1681 μA mmol L−1 cm−2) and lower detection limit (LOD: 1.63 μmol L−1). It is noteworthy to mention that sensor exhibits good operational and long-term storage stability.  相似文献   

8.
The energetic chemical reaction between Zn(NO3)2 and Li is used to create a solid-state interface between Li metal and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) electrolyte. This interlayer, composed of Zn, ZnLix alloy, Li3N, Li2O, and other species, possesses strong affinities with both Li metal and LLZTO and affords highly efficient conductive pathways for Li+ transport through the interface. The unique structure and properties of the interlayer lead to Li metal anodes with longer cycle life, higher efficiency, and better safety compared to the current best Li metal electrodes operating in liquid electrolytes while retaining comparable capacity, rate, and overpotential. All-solid-state Li||Li cells can operate at very demanding current–capacity conditions of 4 mA cm−2–8 mAh cm−2. Thousands of hours of continuous cycling are achieved at Coulombic efficiency >99.5 % without dendrite formation or side reactions with the electrolyte.  相似文献   

9.
The polarity of a semiconducting molecule affects its intrinsic photophysical properties, which can be tuned by varying the molecular geometry. Herein, we developed a D3h-symmetric tricyanomesitylene as a new monomer which could be reticulated into a vinylene-linked covalent organic framework (g-C54N6-COF) via Knoevenagel condensation with another D3h-symmetric monomer 2,4,6-tris(4′-formyl-biphenyl-4-yl)-1,3,5-triazine. Replacing tricyanomesitylene with a C2v-symmetric 3,5-dicyano-2,4,6-trimethylpyridine gave a less-symmetric vinylene-linked COF (g-C52N6-COF). The octupolar conjugated characters of g-C54N6-COF were reflected in its scarce solvatochromic effects either in ground or excited states, and endowed it with more promising semiconducting behavior as compared with g-C52N6-COF, such as enhanced light-harvesting and excellent photo-induced charge generation and separation. Along with the matched energy level, g-C54N6-COF enabled the two-half reactions of photocatalytic water splitting with an average O2 evolution rate of 51.0 μmol h−1 g−1 and H2 evolution rate of 2518.9 μmol h−1 g−1. Such values are among the highest of state-of-the-art COF photocatalysts.  相似文献   

10.
Applying interlayers is the main strategy to address the large area specific resistance (ASR) of Li/garnet interface. However, studies on eliminating the Li2CO3 and LiOH interfacial lithiophobic contaminants are still insufficient. Here, thermal‐decomposition vapor deposition (TVD) of a carbon modification layer on Li6.75La3Zr1.75Ta0.25O12 (LLZTO) provides a contaminant‐free surface. Owing to the protection of the carbon layer, the air stability of LLZTO is also improved. Moreover, owing to the amorphous structure of the low graphitized carbon (LGC), instant lithiation is achieved, and the ASR of the Li/LLZTO interface is reduced to 9 Ω cm2. Lithium volatilization and Zr4+ reduction are also controllable during TVD. Compared with its high graphitized carbon counterpart (HGC), the LGC‐modified Li/LLZTO interface displays a higher critical current density of 1.2 mA cm?2, as well as moderate Li plating and stripping, which provides enhanced polarization voltage stability.  相似文献   

11.
Surface regulation is an effective strategy to improve the performance of catalysts, but it has been rarely demonstrated for nitrogen reduction reaction (NRR) to date. Now, surface-rough Rh2Sb nanorod (RNR) and surface-smooth Rh2Sb NR (SNR) were selectively created, and their performance for NRR was investigated. The high-index-facet bounded Rh2Sb RNRs/C exhibit a high NH3 yield rate of 228.85±12.96 μg h−1 mg−1Rh at −0.45 V versus reversible hydrogen electrode (RHE), outperforming the Rh2Sb SNRs/C (63.07±4.45 μg h−1 mg−1Rh) and Rh nanoparticles/C (22.82±1.49 μg h−1 mg−1Rh), owing to the enhanced adsorption and activation of N2 on high-index facets. Rh2Sb RNRs/C also show durable stability with negligible activity decay after 10 h of successive electrolysis. The present work demonstrates that surface regulation plays an important role in promoting NRR activity and provides a new strategy for creating efficient NRR electrocatalysts.  相似文献   

12.
The deployment of lithium metal anode in solid-state batteries with polymer electrolytes has been recognized as a promising approach to achieving high-energy-density technologies. However, the practical application of the polymer electrolytes is currently constrained by various challenges, including low ionic conductivity, inadequate electrochemical window, and poor interface stability. To address these issues, a novel eutectic-based polymer electrolyte consisting of succinonitrile (SN) and poly (ethylene glycol) methyl ether acrylate (PEGMEA) is developed. The research results demonstrate that the interactions between SN and PEGMEA promote the dissociation of the lithium difluoro(oxalato) borate (LiDFOB) salt and increase the concentration of free Li+. The well-designed eutectic-based PAN1.2-SPE (PEGMEA: SN=1: 1.2 mass ratio) exhibits high ionic conductivity of 1.30 mS cm−1 at 30 °C and superior interface stability with Li anode. The Li/Li symmetric cell based on PAN1.2-SPE enables long-term plating/stripping at 0.3 and 0.5 mA cm−2, and the Li/LiFePO4 cell achieves superior long-term cycling stability (capacity retention of 80.3 % after 1500 cycles). Moreover, Li/LiFePO4 and Li/LiNi0.6Co0.2Mn0.2O2 pouch cells employing PAN1.2-SPE demonstrate excellent cycling and safety characteristics. This study presents a new pathway for designing high-performance polymer electrolytes and promotes the practical application of high-stable lithium metal batteries.  相似文献   

13.
The garnet electrolyte presents poor wettability with Li metal, resulting in an extremely large interfacial impedance and drastic growth of Li dendrites. Herein, a novel ultra‐stable conductive composite interface (CCI) consisting of LiySn alloy and Li3N is constructed in situ between Li6.4La3Zr1.4Ta0.6O12 (LLZTO) pellet and Li metal by a conversion reaction of SnNx with Li metal at 300 °C. The LiySn alloy as a continuous and robust bridge between LLZTO and Li metal can effectively reduce the LLZTO/Li interfacial resistance from 4468.0 Ω to 164.8 Ω. Meanwhile, the Li3N as a fast Li‐ion channel can efficiently transfer Li ions and give their uniform distribution at the LLZTO/Li interface. Therefore, the Li/LLZTO@CCI/Li symmetric battery stably cycles for 1200 h without short circuit, and the all‐solid‐state high‐voltage Li/LLZTO@CCI/LiNi0.5Co0.2Mn0.3O2 battery achieves a specific capacity of 161.4 mAh g?1 at 0.25 C with a capacity retention rate of 92.6 % and coulombic efficiency of 100.0 % after 200 cycles at 25 °C.  相似文献   

14.
Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm−2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.  相似文献   

15.
Piezocatalytic hydrogen peroxide (H2O2) production is a green synthesis method, but the rapid complexation of charge carriers in piezocatalysts and the difficulty of adsorbing substrates limit its performance. Here, metal-organic cage-coated gold nanoparticles are anchored on graphitic carbon nitride (MOC-AuNP/g-C3N4) via hydrogen bond to serve as the multifunctional sites for efficient H2O2 production. Experiments and theoretical calculations prove that MOC-AuNP/g-C3N4 simultaneously optimize three key parts of piezocatalytic H2O2 production: i) the MOC component enhances substrate (O2) and product (H2O2) adsorption via host–guest interaction and hinders the rapid decomposition of H2O2 on MOC-AuNP/g-C3N4, ii) the AuNP component affords a strong interfacial electric field that significantly promotes the migration of electrons from g-C3N4 for O2 reduction reaction (ORR), iii) holes are used for H2O oxidation reaction (WOR) to produce O2 and H+ to further promote ORR. Thus, MOC-AuNP/g-C3N4 can be used as an efficient piezocatalyst to generate H2O2 at rates up to 120.21 μmol g−1 h−1 in air and pure water without using sacrificial agents. This work proposes a new strategy for efficient piezocatalytic H2O2 synthesis by constructing multiple active sites in semiconductor catalysts via hydrogen bonding, by enhancing substrate adsorption, rapid separation of electron-hole pairs and preventing rapid decomposition of H2O2.  相似文献   

16.
Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets show brilliant application potential in numerous fields. Herein, a membrane with artificial nanopores and self-supporting spacers was fabricated by assembly of 2D g-C3N4 nanosheets in a stack with elaborate structures. In water purification the g-C3N4 membrane shows a better separation performance than commercial membranes. The g-C3N4 membrane has a water permeance of 29 L m−2 h−1 bar−1 and a rejection rate of 87 % for 3 nm molecules with a membrane thickness of 160 nm. The artificial nanopores in the g-C3N4 nanosheets and the spacers between the partially exfoliated g-C3N4 nanosheets provide nanochannels for water transport while bigger molecules are retained. The self-supported nanochannels in the g-C3N4 membrane are very stable and rigid enough to resist environmental challenges, such as changes to pH and pressure conditions. Permeation experiments and molecular dynamics simulations indicate that a novel nanofluidics phenomenon takes place, whereby water transport through the g-C3N4 nanosheet membrane occurs with ultralow friction. The findings provide new understanding of fluidics in nanochannels and illuminate a fabrication method by which rigid nanochannels may be obtained for applications in complex or harsh environments.  相似文献   

17.
Uneven lithium (Li) electrodeposition hinders the wide application of high-energy-density Li metal batteries (LMBs). Current efforts mainly focus on the side-reaction suppression between Li and electrolyte, neglecting the determinant factor of mass transport in affecting Li deposition. Herein, guided Li+ mass transport under the action of a local electric field near magnetic nanoparticles or structures at the Li metal interface, known as the magnetohydrodynamic (MHD) effect, are proposed to promote uniform Li deposition. The modified Li+ trajectories are revealed by COMSOL Multiphysics simulations, and verified by the compact and disc-like Li depositions on a model Fe3O4 substrate. Furthermore, a patterned mesh with the magnetic Fe−Cr2O3 core-shell skeleton is used as a facile and efficient protective structure for Li metal anodes, enabling Li metal batteries to achieve a Coulombic efficiency of 99.5 % over 300 cycles at a high cathode loading of 5.0 mAh cm−2. The Li protection strategy based on the MHD interface design might open a new opportunity to develop high-energy-density LMBs.  相似文献   

18.
Heterojunction design in a two-dimensional (2D) fashion has been deemed beneficial for improving the photocatalytic activity of g-C3N4 because of the promoted interfacial charge transfer, yet still facing challenges. Herein, we construct a novel 2D/2D Cu3P nanosheet/P-doped g-C3N4 (PCN) nanosheet heterojunction photocatalyst (PCN/Cu3P) through a simple in-situ phosphorization treatment of 2D/2D CuS/g-C3N4 composite for photocatalytic H2 evolution. We demonstrate that the 2D lamellar structure of both CuS and g-C3N4 could be well reserved in the phosphorization process, while CuS and g-C3N4 in-situ transformed into Cu3P and PCN, respectively, leading to the formation of PCN/Cu3P tight 2D/2D heterojunction. Owing to the large contact area provided by intimate face-to-face 2D/2D structure, the PCN/Cu3P photocatalyst exhibits significantly enhanced charge separation efficiency, thus achieving a boosted visible-light-driven photocatalytic behavior. The highest rate for H2 evolution reaches 5.12 μmol·h–1, nearly 24 times and 368 times higher than that of pristine PCN and g-C3N4, respectively. This work represents an excellent example in elaborately constructing g-C3N4-based 2D/2D heterostructure and could be extended to other photocatalyst/co-catalyst system.   相似文献   

19.
The piezo-Fenton system has attracted attention not only because it can enhance the Fenton reaction activity by mechanical energy input, but also because it is expected to realize a class of stimuli-responsive advanced oxidation systems by regulating energy input and hydrogen peroxide self-supply, thus greatly enriching the application possibilities of Fenton chemistry. In this work, a series of Fe-doped g-C3N4 (g-C3N4-Fe) as a piezo-Fenton system were synthesized where the iron stably immobilized through Fe−N interaction. The piezo-induced electrons generate on g-C3N4 matrix support the conversion of Fe(III) to Fe(II) and promote rate-limiting step of Fenton reaction. With the optimal Fe loading, g-C3N4-0.5Fe can achieve methylene blue (MB) degradation under ultrasonic treatment with first-order kinetic rate constants of 75×10−3 min−1. Most importantly, the g-C3N4-Fe can maintain good catalytic activity in a wide pH range (pH=2.0∼9.0) and be cyclic used without iron leaching to solution (<0.001 μg ⋅ L−1), overcoming the disadvantage of traditional Fe-based Fenton catalysts that can only be applied under acidic conditions and prone to secondary pollution. In addition, g-C3N4-0.5Fe also exhibits antibacterial properties of Escherichia coli and Staphylococcus aureus under ultrasound. Hydroxyl radicals mainly contribute to the degradation of MB and the sterilization process. Our work is an attempt to clarify the role of g-C3N4-Fe in the conversion of mechanical energy to ROS and provide inspirations for the piezo-Fenton system design.  相似文献   

20.
As the main component of syngas, reducing CO2 to CO with high selectivity through photocatalysis could provide a sustainable way to alleviate energy shortage issues. Developing a photocatalytic system with low cost and high performance that is environmentally friendly is the ultimate goal towards CO2 photoreduction. Herein, an efficient and economic three-component heterojunction photocatalyst is designed and fabricated for converting CO2 to CO in the absence of organic sacrificial agents. The heterojunction is made of Cu2−xS nanotubes coated with a carbon layer (C-Cu2−xS) and g-C3N4. By using the classical MOF material HKUST-1 as a precursor, hollow tubular-like metal sulfides (C-Cu2−xS) with carbon coating were synthesized and further loaded on g-C3N4, forming a three-component heterojunction C-Cu2−xS@g-C3N4. The carbon coat in C-Cu2−xS@g-C3N4 acts as an electron reservoir, which facilitates electron–hole pair separation. The optimized C-Cu2−xS@g-C3N4 acted as a photocatalyst in CO2 reduction with a high reactivity of 1062.6 μmol g−1 and selectivity of 97 %. Compared with bare g-C3N4 (158.4 μmol g−1) and C-Cu2−xS, the reactivity is nearly 7 and 23-fold enhanced and this CO generation rate is higher than most of the reported Cu2S or g-C3N4 composites under similar conditions. The prominent activity may result from enhanced light adsorption and effective charge separation. This work might open up an alternative method for the design and fabrication of high-performance and low-cost photocatalysts for efficiently and durably converting CO2 to CO with high selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号